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ABSTRACT

Whistler mode waves that propagate through the magnetosphere
exchange energy with energetic electrons by wave-particle interaction
mechanisms. Using linear theory, a detailed investigation is presented
of the resuiting amplitude variations of the wave as it propagates.
Arbitrary wave frequency and direction of propagation are considered. A
general class of electron distributions that are nonseparable in particle
energy and pitch-angle is proposed. Comparison with data is obtained
by computing the total amplitude variation between two locations along
the wave ray path. It is found that the proposed distribution model is
consistent with available whistler and particle ohservations. In
particular, this model yields insignificant amplitude variation over a
large frequency band, a feature commonly ohbserved in whistler data.

This feature of the data implies a certain equilibrium between waves and
particles in the magnetosphere over a wide spread of particle energy,

at least during certain (magnetically guiet) times, and is relevant to
plasma injection experiments. Application of our analysis for monitoring

the distribution of energetic electrons in the magnetosphere is discussed.
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LIST OF PRINCIPAL NOTATIONS

B = Magnetic (induction) field

BO = Earth's static magnetic field

B1 = Wave magnetic field

¢ = Velocity of light in free space ~ 3><108 m/s

D = Electric inducticn field or whistler dispersion

e = Elementary charge (positive) = 1.602x10_1gc; in subscript refers
to electrons

E = Electric field; in subscript, refers to equatorial values

= Particle distribution function or wave frequency (Hz)

g = Particle distribution function normalized to unity or acceleration
of gravity
Gu = Whistler gain per 1000 km
G = Integrated whistler gain cver a ray path
i = /-1: in subscript, refers to ions
J = Current density
k = Wave number
K = Boltzmann's constant = 1.38x10-23J (OK)-l
L = McIlwain geomagnetic dipole coordinate
m = Order of cyclotron harmonic
M = Particle mass
M0 = Rest particle mass
My, = 0.911x107°0 kg
Moy = Proton rest mass = 0.167x10" 28 kg
n = Particle density
N = Refractive index
P = Particle momentum
= Particle charge (algebraic)
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DEFINITIONS OF IMPORTANT TERMS USED THROUGHOUT THE TEXT

"parallel" and "perpendicular” refer to the direction of the wave
normal %k with respect to the static magnetic field EO
"longitudinal” and "transverse' refer to the direction of k with
respect to electric field of the wave E

=1
the subscripts ¥ and , at the right of letters refer to vector
components along and across B respectively. Subscript 1 at the

left of letters refer to the special case of parallel propagation.

the particle energy is referred to as:

"cold" or "thermal” in the approximate range: 0 - 107! v

' . -1
'very low" in the range: 10 eV to 100 eV

"low" in the range: 100 eV to 40 keV

"high" in the range: 40 keV and above

"gain'"' will be used for "wave amplitude variation,” often with =2
quantitative connotation. Positive (negative) gain means wave growth
(damping).

Because of inhomogeneity, a wave starting at one location may not be
able to propagate to a second location in space. The second location
is described as being "accessible" if, according to the laws of geo-

metrical optics, it can be reached by the wave.

The term "instability” will refer to wave amplitude variation due to
wave particle interaction.

The waves vary in proportion to exp[fi(k-r—wt)], { = #1.
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I. INTRODUCTION

The magnetosphere extends many earth radii above the ionosphere. It
is the region in space where the earth's magnetic field has dominant con-
trol over the motions of charged particles.

The presence of these charged particles in turn determines the
characteristics of the different electromagnetic wave modes which can
propagate in the magnetosphere. Our interést will be focused on the
"whistler' mode. The frequency range of the whistler mode extends approx-
imately between the proton and electron gyrofrequencies. Its sense of
polarization corresponds to the sense of gyration of electrons compelled
to gyrate and drift along the earth's magnetic field lines.

The charged particles can be divided into two classes according to
their energy: the 'cold' or 'thermal' particles and thgl'hot' or 'ener-
getic' particles. The cold particles have a distribution approximately
Maxwellian with an average energy of the order of 10_1 eV [Angerami, 19661
and determine the ray path of a wave between two locaticns in the magneto-
sphere. The hot particles can generate'waves.[Kennel and Petscheck, 1966;
Helliwell, 1967] or cause amplitude variations of a preexisting wave along
its ray path. Such an interaction invelves a possible exchange of energy
between waves and particles. This transfer of energy into the wave can
be either positive or negative, depending upon the precise values of wave,
cold, and hot plasma parameters.

Since Storey's [1953] investigation, the study of whistler wave prop-
agation characteristics has provided an invaluable diagnostic tool to
determine the distribution of thermal particles in the magnetosphere.

In contrast, the study of whistler-electron interaction characteristics
has not Jled to the development of a successful diagnostic tool for the
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determination of the energetic particle population. The importance of
this interaction study is considerable though. Such a study may provide

a better knowledge of the energetic particle population. It may provide
also a better understanding of the magnetospheric medium. The interaction
mechanism in itself may furnish an explanation of features of the magneto-
sphere or the generation of electromagnetic waves.

Knowledge and understanding of particle distribution characteristics
are of fundamental importance in the whole field of plasma physics, from
labora tory plasma experiments to astrophysies. 1In the laboratory, for
example, knowledge of particle distributions is primordial in the field
of plasma ion sources [Bernard, 1967; Bencit-Cattin and Bermard, 19681.
Understanding of wave-particle interaction mechanisms is most important
in fusion research. These mechanisms certainly play a role in astro-
physical phenomena, like pulsars.

The purpose of our work is to compute the whistler amplitude growth/
damping rates due to whistler-electron interaction, to discuss its varia-
tions with regard to all parameters of concern, and, using a number of
whistler observations, to infer possible models of the energetic electrons
of the magnetosphere.

Hl " .
and accessi-~

Wave amplitude variations are due both to "instability
2 s . s -
bility"” and it is often difficult to separate the two effects. When there

is a frequency cutoff of a broadband signal, the question arises whether

the frequencies above (or below) the frequency cutoff were damped by

"Instability, as defined here, means wave amplitude variations due to
wave-particle interaction.

A location in space is "accessible” if, according to geometrical optics,
it can be reached by a wave starting from another point.

SEL 73-043 2



wave-particle interaction, or whether these frequencies could not propa-
gate from the location of generation to the location of reception. This
frequency cutoff phencmenon is illustrated in Figure 1.1 which represents
an example of a "nose whistler spectrogram recorded at a ground station.
Typically, such a signal presents an upper cutoff at some frequency fu.
The spectral shape of the signal is explained schematically in Figure 1.2.
A broadband wave signal is generated by a lightning discharge close to
the earth's surface. The generated frequencies are transmitted in part in
the earth-ionosphere waveguide to the receiver in the other hemisphere
where they appear on the spectrogram practically without dispersion as a

:
frequeney impulse or ~atmospheric.’ The generated frequencies travel also
in the magnetosphere and are guided or 'ducted” along a magnetic field
line. The magnetosphere is highly dispersive, that is, different fre-
quencies travel with different velocities. As a result, the whistler has
the characteristiec shape shown on Figure 1.1. Notice from the figure that
there is a characteristic frequency, namely the frequency of minimum time
delay t or "nose' frequency f . Measurements of t = and £ have
provided an invaluable technique for magnetospheric diagnostics [(Smith,
1960; Carpenter, 1962, 1963, 1966, 1970; Carpenter and Smith, 1964;
Carpenter et al., 1972; Helliwell, 1965; Angerami, 1966; Angerami and
Carpenter, 1966; Park, 1870, 1973; Park and Carpenter, 1970; Bernard, 1973;
Ho and Bernard, 19731.

Smith [1961], proposed an elegant explanation of the upper frequency
cutoff fu. As the magnetosphere is practically a collision free medium,
density irregularities can exist for a long time. He showed that small
field-aligned enhancements of ionization or "ducts’ can trap low frequencies
below fu {path 2 on Figure 1.2), whereas high frequencies above fu are

3 ‘ SEL 73-043
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FIGURE 1.2. RAY PATHS INVOLVED IN PRODUCTION OF A TYPICAL NOSE WHISTLER. Frequencies generated
at point G by a lightning discharge travel in part close to the ‘earth along path 1
and in part along a magnetic field line along path 2 up to an upper frequency f

above which they propagate along path 3. Wave components of frequency below f can be recorded

on the ground to point R. Frequencies above

b
u

can only be recorded on satellites.



untrapped at some point A (path 3) and cannot reach the receiver location
R.

Scarf [1962] proposed an alternative explanation for the upper cut-
off fu based on hot plasma effects. Taking an isotropic Maxwellian
distribution for the hot electrons he found that whistlers could be
a£fenuated due to wave-particle interaction, the attenuation increasing
rapidly with frequency. Postulating that the high frequency cutoff was
indeed caused by such a mechanism, he determined in turn what should be
the temperature. He found an order of 105 °kK. This analysis was subse-
quently refined by Liemobhn and Scarf [1964].

Guthart [1964, 1965] then showed that a temperature k,105 OK would
produce a slight, but a measurable change in the dispersion curve f(t)
of Figure 1.1. Because he could not observe this change, he proposed
another type of distribution which would produce the observed cutoff but
no change in the curve f£(t). Liemohn [1967] made a quantitative analysis
where he integrated the variation of amplitude along the field line path
(2). He chose a particle distribution function f(W,a) which was a product
of a function of W alone and a function of o alone where W and g

are respectively the particle energy and pitch-angle:

v qa

f(W,a) < W ¥ sin g (1.1)

and found that a value of the parameter ¢q = 2 would produce the right
value of frequency cutoff. He found also an increasing in amplitude just
below fu, compatible with ohservation. The question of whether this
cutoff is caused by accessibility or wave-particle instability was reopened
when Carﬁenter [1968] made a statistical study of over 500 nose whistlers

propagating along a wide variety of locations. He showed that the ratio

SEL 73-043 6



fu/ch {where £ is the equatorial gyrofrequency of the path) was

cE
statistically very constant: fu/ch = 0.51 = 0.03. This value is

almost exactly the value predicted by Smith's [1961] theory of trapping
(fu/ch = 0.50). These facts favored the accessibility explanation

rather than the instability explanation because the predicted value of

the accessibility ratio fu/ch is practically independent of any

parameter whereas the instability ratio depends upon many parameters

and should vary with different propsgation pathz. This is contrary to
observation.

Evidence of the accessibility explanation-was put forth by Angerami
[1270]1, who observed some unducted frequenty components of whistlers on
a satellite. Briefly, referring to Figure 1.2, high frequency components
are trapped up to a certain point A on the field line and become untrapped
after, that is, no longer follow a field line but follow a path such as
(3). A satellite intersecting the ray path (3) can record these components
(see Figure 4.1).

Since the validity of the accessibilify cutoff appears to be clearly
established, the distribution proposed by Liemohn [1967] seems somewhat
doubtful. One of our aims has been to find more realistic distributions.

Furthermore, Liemohn's [1967] computations include only propagation
parallel to the magnetic field. Now that a body of very interesting
satellite data, such as Angerami's [1970], has been obtained showing
evidence of nonparallel prﬁpagation, these computations should include
nonparallel propagation as well. A qualitative study of wave instability
for nonparallel propagation limited to low frequency (f << fc}, has been
done by Kennel [1966], and Kennel and Thorne [1967]. Brinca [1972] extended
this study to waves of frequency m.fc/z. Thorne [1968] made a quantitative
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instability study for "MR whistlers” (see Section 4E) which are again
low frequency whistlers. The observations of whistler signals at high
normalized frequencies [Angerami, 1970; Dunckel and Helliwell, 1972],
show the necessity to make a quantitative study of the high frequency
oblique whistler instability. This study has been our second goal.
The contributions of the present work can be briefly stated as

follows:

1. We propose a new model for the energetic particle dilstribution
function. This model has some important characteristics and
among them, it yields very small amplitude variations over a
large band of wave frequencies, and we believe it represents
the energetic electron distribution more realistically than
previous models.

2. We derive a new general expression for the variation of wave
amplitude caused by wave-particle interactions for an arbitrary
angle of propagation. This expression is algebraically simpler
than previously derived expressions and permits easier numerical
computations. A Fortran program has been developed to compute
gain rates of a whistler integrated along its ray path for a
certain class of hot plasma distributions.

3. We have integrated gain rates along whistler ray paths deduced
from some whistler observations. We have determined some
bounds on the values of the parameters of our proposed distri-
bution. We make some suggestions concerning the explanation of
certain features of the observed particle spectrum.

4. We discuss the application of our analysis to the development

of a diagnostic tool for monitoring the distribution of hot
electrons, and to plasma injection experiments.

In Chapter 2, the theory of whistler-mode wave particle interactions
is presented. First, we describe briefly the physics of the interaction,
followed by the formulation of solving the coupled system of Maxwell
equations and linearized Vlasov equation. Then we derive a general
expression for the rate of variation of wave amplitude for an arbitrary

angle between the wave normal and the earth's magnetic field and for an

arbitrary frequency below the gyrofrequency.
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In Chapter 3, we study in detail the variation of the wave gain for
parallel propagation and for both a distribution separable and nonseparable
in energy and pitch angle. We present a detailed study of the influence
of the angle between wave normal and earth's magnetic field.

Iﬁ Chapter 4, we compute gain rates along ray paths deduced from
some whistler observations.

Finally, in Chapter 5, conclusions are drawn and recommendations are
made for future work. The details of numerical computations of gain
rates, and various derivations and auxiliary material are presented in

the appendices.
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I1. THEORY

A INTRODUCT ION

This work is concerned with the amplitude variations of an electro-
magnetic wave caused by the presence of energetic electrons.

The physics of such a mechanism can already be understood from the
interaction of a single particlie with an electromagnetic wave. We describe
the interaction from this point of view in Section B. We ‘define there
such notions as 'resonance’’ and "trapping.” It is then possible to
establish a qualitative relation between the interaction of one particle
to the interaction of a distribution of particles.

More rigorously, the interaction between wave and particle is a
splution of a wave-plasma system. As such, it invelves the scolution of
Maxwell's equations coupled with a kinematics equation. Since the magneto-
spheric medium can generally be treated as collision-free, the evolution
in time of the particle distribution function can be described by the
Vlasov equation.

Section C describes the formulation for solving the coupled system
of equations after linearization of Vlasov's equation.

In Section D, a general expression is derived for wave amplitude
variation, including relativistic effects, arbitrary wave frequency, and

arbitrary direction of propagation.

B. PHYSICS OF THE INTERACTION DESCRIBED FROM A TEST PARTICLE MOTION

1. Interaction cf One Particle with an Electromagnetic Wave

The motion of a particle interacting with an electromagnetic wave
has been described in great detail by a number of authors {(e.g., Roberts

and Buchsbaum [1964]; Laird and Enox [1965]:; Bell [1965]:; Lutomirski and
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Sudan [1966]; Laird [1968]1; Dungey [1969]; Roux and Solomon [19701];
Palmadesso and Schmidt [1971); Dysthe [1971]; Palmadesso [1972]1). 1In
this section we will give a brief description of the interaction.

Because of its motion a particle can experience the electric field
of an électromagnetic wave, which is time-varying in the laboratory frame,
as a constant electric field. In general this condition is realized only
when the momentum or a component of the momentum of the particle takes a
particular set of values. This condition is referred to as the resonance
condition. Because the particle sees a constant electric field at
resonance, it can experience a strong acceleration (deceleration) which
means there is an energy exchange between the particle and the wave as
the particle gains (loses) energy at the expense (benefit) of the wave
energy. This mechanism is responsible for damping (growth) of the wave.

Off resonance, the particle sees a time-varying field and therefore
it alternatively experiences both acceleration and deceleration; the
exchange of energy between the wave and the particle averages to zero as
time elapses. A particle initially at resonance will not stay in this
state for a very long time, its momentum changing its value due to its
acceleration (deceleration). It is shown that, provided the value of the
particle momentum is close enough te one of the resonance values, a stable
situation called trapping can develop: a particle initially in phase with
the wave field will be accelerated, will eventually see a phase reversal
of the field, be decelerated and will again be in phase with the wave field,
the process repeating itself in a stable way.

Not toec close to resonance, the particle will not be trapped, that

is it will drift along successive peaks and valleys of the wave.
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In any case, the interaction is most important at resonance and its
vicinity because the further from resonance the less the particle is
perturbed by the wave.

For this reason, we rederive the resonance condition [Bell, 1964]
which is deduced in the linear treatment. We also rederive the expression
for the minimum energy of resonance.

Linear behavior: The electric field of the wave is taken of the

El(E'E'wt)

form E = E . Within the linear approximation, we evaluate

~0
the phase of the field at the unperturbed (E = 0) location of the particle
at the time t [Quemada, 1968]. According to what we have said previously,

the resonance condition will be obtained when the phase of the field becomes

constant. The unperturbed motion of the particle is defined by:

dp P
gt demX B =% XL 2.1
where the relativistic mass
p2
M= M, 1+M22 (2.2)
o
and |q |B
e!™0
(Dc = -—T . (2-3)
The motion of the particle {(neglecting radiation) is a helix whose
axis is parallel to §O; therefore:
t = =
p (t) =p_, z P,ot/M
(t) = cosw t (t -Bﬁ i
px = pL ot x(t) = Mmc 51nakt + XO
(t) s
t = ginw t t = = = Mt 2.4
Py P, - y(t) i cosw t + ¥, ( )
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with k = (kX,O,kz), the wave phase becomes:

kxp; pOz
E’E - wt = E.E{) + Slml)ct + (kz T ~)t (2.5)
C
where EO = E(t = Q).
Using the identity:
- - m i
e - x5 (e (2.6)
" M=-m»
. ik-r =2 kp P
k-r-ot =20 0
el(— r-wt) = e 5 ;%](Mi l) exp(i(kZ _ﬁE + mué—m)t) (2.7
Mm=-o [

This last expression shows that the particle sees a superposition of

waves propagating in the 0z direction and sees a constant field when
A
k — + mw - w=20 (2.8)
M c

P
0 . .
Now, ' =w - kz —ﬁa is the Doppler shifted frequency of the wave

seen by the particle and the resonance condition is rewritten as:

w = ma m=0,+1,+2,... {2.9)

The resonance m = 0 is excited by both the parallel and the per-
pendicular components of the electriec field (referenced to the static
magnetic field)‘and includes the well known Landau resonance. (For con-
venience we‘will refer to the m = 0 resonance as the Landau resonance.)
All other resonances m # 0 are excited ﬁy the perpendicular component
of the electric field and are calledlthe cyclotron resonances. The
infinity of harmonics is due to the spatial variation of the electric
field in planes perpendicular to the static magnetic field.

In the general case, there are two roots of Eq. (2.8) (m # 0;
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m = 0 - only one positive root):

_ L. (2.10)
PRm1, 2 N

The minimum energy of resonance WR(pL = 0) dis given by:

2
p, (p = 0)
Rm ™" 1 2
= _— ; = . 2.
Wen =W, \/:+ 2 1f; w, = Mge (2.11)
Po

p0 = Moc
e = <) (E’Eﬂ)
A = uyuho where here mEO is the rest mass gyrofrequency

=z
1l

refractive index

Ncosg

11

In the non-relativistic 1imit the resonance condition is satisfied

for one value of for each m:

Pr
B = - . (2-12)

In Figure 2.1 we have plotted WR versus N, with A as a

parameter for the Landau (m = 0) and the fundamental cyclotron (m = 1)
resonances. Note in Figure 2.1 that departure from a straight line
represents departure from the non-relativistic limit and that in the

non-relativistic range W is lower (higher) than W

RO when p 1is

Rl
smaller (larger) than 0.5.

Nonlinear behavior: To see what happens after the initial (linear)
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development of the interaction, we have to integrate the equations of
motion. Though the general case (8 # 0) is fairly involved and has only
been tackled recently [Palmadesso, 1972], it is basically the super-
position of Landau and cyclotron cases and it suffices to look at these
two cases separately.

In the Landau interaction (E field alone), the equation of motion

is simply:
dzx

t2 0

E sin(kx-wt) {(2.13)

o,
E‘n

which becomes by change of variable £ = kx-wt:

9—% = %EE sing . (2.14)
dt 0

This equation is analogous to a pendulum equation. Note that g
is merely the deviation from the resonance position XR = % LI ¥

Now the solution of Eq. {2.14) can be of two types depending upon
initial conditions. The particle can oscillate back and forth around
the resonance position or can ''rotate” completeiy. 1In the first case
the particle is said to be trapped. Trapping is an important phenomenon
because the motion of the particle is significantly altered by the
presence of the field and energy exchanges with the wave can be guite
important.

In the case of trapping, the solution is periodic.

The case of small oscillations gives an order of magnitude of the

period (called trapping time TL):

M

T, = = = 21 /2 : (2.15)
Loy (mﬁ)
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Note that particles close to resonance are most likely to be
trapped (small oscillations case). Note also that Landau trapping means
bunching of particles in space.

The situation will be found to be similar for cyclotron interaction.
Consider a particle in the field of ; circularly-nolarized electromagnetic

wave propagating alohg EO:

= - i t), agnetic field
let El [Blocosgs(kz wt),51051ngs(kz~w ),0] be the mag ic fie
vector of the wave. (Ci e = +1, which defines polarization for normal

¥

interaction with either an electron or an ion.)

The equations of motion of the particle are [Dysthe, 19711]:

v, = - gsvlublsinw .
v, o= gs(ﬂl—vp)mklsin¢ ,
(ﬂl—v ) ;
fes) = - gsl’_l)co- Cswcl . COS\]} (2-16)
L
where the particle velocity is V = [v cosyg,V sinm,v"] and where
w eB0 L L eB1
= v = = %) = — , and © = — . definitio

W <) (Y_l’gl)’ r k ! c0 M o cl M By 8
the angle || can be written as § = - + gs(kz—am) and two differenti-

ations with respect to time produces the expression

$ =-mt Cské||' (2.17)

Since wEl < wEO in the magnetosphere, the last equation in (2.16)

shows that {provided v, is not too small) ;5 ~ constant and therefore

Eq. (2.17) becomes ﬁ A,gskéu. Thus the first equation in (2.16) can be

rewritten
1) 2 .
VI aﬁc siny (2.18)
where
_ 2n 1/2
Dpe = T, - (mclkVL) '
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We find again a pendulum type equation, this time with respect to
the variable 1§, that is, in velocity space. The same conclusions apply
as in the l.andau case. There will be trapped particles and the period
of trapping will be of the order of TC ﬂ.ugi .

From the first two equations of (2.16) a constant of motion is
immediately found [Dysthe, 1971]:

v2 - 2v"vp = constant . (2.19a)

2. Relation of Particle Motion to Wave Growth

Now we would like to know what happens when we include an
ensemble of particles. It is possible to get a qualitative answer with-
out going to the full Maxwell Vlasov treatment described in some detail
in the next section.

In the Landau interaction case, particles initially having energy
slightly above the energy of resonance will tend to be trapped and on the
average oscillate at the resonance energy while it is the opposite for
particles initially having energy slightly below resonance. Therefore,
the former particles will tend to lose energy while the latter will tend
to gain energy. If more particles tend to lose energy than to gain
energy, there will be wave growth and vice versa.

In terms of the distribution function:

of
= > 0 ~ GROWTH
ov lv
R
of
P < 0 = DAMPING
Vi |v
R

For the cyclotron interaction case, it is useful to recall

Ea. (2.19a). It is written also as:
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1 Mv2 + 1 M(v -v )2 = constant = W' {(2.19b)
2 L 2 Fp

Equation (2.19b) is very easily interpreted. In the wave frame (where
we shall denote guantitites by prime superscript), by Lorentz transforma-
tions [Feynman, 1964]:

7
E, =%

(E + v_xB)
’ — —p =1

E T
L l-vp/c

Now from Maxwell's equations:

= -~V % B or, E’ =0 .

Also since E =0, E; =0

Therefore Eq. (2.19b) simply means that the particle energy w’
in the wave frame stays constant. Following Gendrin [1968], Eq. (2.19b)
is graphically interpreted in Figure‘2.2.

In the (v”,vl) plane, particles of constant energy follow a circle
centered at the origin. From Eq. (2.19b) particles interacting with the
wave follow a circle centered on vp (taking vp as > 0; remember that
Vp < 0). From Figure 2.2, it is obvious that particles with parallel

velocity initially slightly above [v and resanéting with the wave

Rl
will gain energy. At the same time their pitch angle increases. The situ-

ation is reversed for particles with |v,| slightly below |[v In the

R"
cyclotron interaction, the 'slow' particles cause wave growth in contrast
to the Landau interaction, a condition already drawn by Bell [1964]. This

reflects merely the fact that for (mormal) cyclotron interaction, wave and

resonating particles are moving in opposite directions. For anomalous
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cyclotron interacticn (e-L or p-R interaction) VR and vp are of
the same sign and 'fast' particles cause wave growth. In this case
particle energy increase is associated with pitch angle decrease, which
was algebraically demonstrated by Brice [1964].

From Figure 2.2, it is also seen that resonant particles with high
energy (]VR‘ > Vp) interact with the wave with practically no change of
energy because the circles of W’ = constant are practically coincident
with the circles W = constant. There is 'pure pitch angle' diffusion
[(Kennel and Petschek, 1966]. For particles with [vR[ comparable or
less than vp, the curves of constant W and W/ d&ffer significantly.
There can be energy diffusion at a rate comparable to pitch angle
diffusion. This is confirmed quantitatively by the quasi-linear theory
[Kennel and Engelmann, 1966].

Now W —w w
vV = v = E . (2-20)

Therefore high-energy resonant particles interact with low frequency
(o << ab) waves and vice versa.

We have seen that in the Landau case, gain rates are related to the
derivative of the distribution function measured at the resonant velocity.
We expect a similar situation in the c¢yclotron interaction but in con-
trast to the Landau case which was clearly a one-dimensional problem,
several derivatives should be involved. The azimuthal variable plays a
fundamental role in trapping but in the linear case this variable is not
of primary importance (we shall find more rigorously in the next section
that @& necessary condition for the time invariance of the unperturbed system

is that I must be m—independent). So two variables remain to be considered,
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v, and Vv for example. However, since in experimental measurements of

particle fluxes, the energy W and the pitch angle ¢ of the particle

Iy

are most readily measurable, we shall use rather those two variables.

From Figure 2.2 we can qualitatively see how the signs of the deriva-

tives 'g% and %2 influence the wave gain. On Figure 2.2, particles

(1) and (2) refer respectively to particles with |q|( slightly faster
and slower than lle. Either particle resonating with the wave follows
a curve of constant W’. The trajectories can be decomposed as paths at
constant pitch-angle, A.B and A_B_, and paths at constant energy

171 272

C d BC.
B1 an 2C

At constant pitch angle: particle (1) causes damping while particle

{2) tends to cause growth. Now particle (1) has a lower level of energy
than particle (2). Therefore, at constant pitch angle, if f is such
that there are more particles of type (1) than of type (2), there will

be damping, in other words:

of

5 | < 0 - DAMPING
v
R

At constant energy: particle (1) causes damping while particle (2)

causes growth. More particles of type (2) than of type (1) will cause

growth:
of
= | > 0 - GROWTH
'R
This gives a qualitative picture of wave gain by wave-particle inter-
action, a result found more rigorously in the next section. The correct
expressions for gain rates involve such derivatives of the particle dis-

tribution function evaluated at the resonant velocities. The gain

expression depends upon the number of resonant particles as anticipated,
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but because it depends also upon derivatives of £ not only the ampli-
tude of the distribution function is important but also the fine details
of the distribution function. For this reason there is possibly a great
range of wave gain rates while still considering realistic models of
particle distributions in the magnetosphere.

3, Whistler Mode Refractive Index Characteristics and the Stand ard
Approximation

To know the energies of resonance of particles, we need the
refractive index values. In a cold collisionless plasma immersed in a
static magnetic field BO’ electromagnetic waves of frequency below the
electron gyrofrequency can propagate in either of two modes. These modes
are elliptically polarized and the mode whose sense of polarization
corresponds to the sense of gyration of electrons is defined as the
"whistler mode." The other mode corresponds to a polarization in the
opposite sense to the sense of gyration of the electrons. As we will be
cohcerned essentially with electron interaction and wave of frequency
W > &Ei, we will be concerned uniquely with the whistler mode. It can
be shown that in fact throughout most of the inner magnetosphere the
other mode does not propagate.

The full expression of the refractive index is given in Stix
[1962]. A first approximation is to neglect the ions. It is valid when
m >> ﬁiHR’ where mLHR is the lower hybrid resonance frequency. For a
high density, two species plasma consisting of electrons of mass Me

and ions of mass Mi’

w, ~ W —_— (2.21)

. . 2 . .
Neglecting ions, N can then be written in the form
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2
2 B
N =1+ 5 RN ) 5 ! (2.22)
\fxzcos 8 + Csin & + Csin 6-A

where o

c=—L

2(12-8%)

Equation (2.22) shows that the whistler mode is a propagating mode

over the angular ramge from 8 = 0 to the resonance cone angle

8, = cos ™ [L/aﬁ 1 - Az] (2.23)

B

High-plasma frequency approximation: Equation (2.22) can be simpli-

2 . . -
fied when 62 >» 1 or aﬁ >> (. With this approximation coseR ~ p
and € «can be neglected in Eq. (2.22) as well as the factor 1 in front

of the fraction term:
2
" p(cosB-p)

2

N (2.24)

2
Quasi-parallel approximation: This approximation holds when Csin §

2

can be neglected in Eq. (2.22), i.e., |C|sin29 << A . 1t is related to
the "quasi-longitudinal" approximation of Stix [1962] and Helliwell
[1965] or "quasi-circular" approximation of Allis et al [1963]. It

2 2 2
holds for small 8§ or for |CL << A, that is, 2(8"-A") = 1 or
2
B >> 1. This shows that the quasi-parallel approximation can be con-
sidered as a particular case of the high plasma-frequency approximation.

Non-relativistic approximation and standard approximation: When

2

B >»> 1, relativistic corrections can be neglected for Landau reschance
energy and, except in the case of extremely low frequencies, for funda~
mental cyclotron resonance energy. For that reason, the non-relativistic

and the high plasma frequency (and a fortiori the quasi-parallel)
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approximations overlap almost completely. From now on, we will use the
term "standard approximation” to mean explicitly that the three approxi-
mations are satisfied.

Ion correction for very low frequencies: For o comparable to

w,

LHR’ the ions cannot be neglected but a simple approximation can be used

[Edgar, 1972] within the standard approximation:

9 2
N m;————il————— (2.25)
A{cosB-gA)
where: 2
)
LHR
5:1—--—-—-——-2.
W

For w>> w

LHR’ we find expression (2.24). Equation (2.25) shows that

propagation is possible for all angles when @ < mLHR' N(®) is sketched
in polar coordinates on Figure 2.3 to point out the different topologies
of the refractive indexhsurface according to frequency. Precise values
of N = Ncos8 are plotted versus & for different values of p, in
Figure 2.4.

Knowledge of the polarization of the whistler mode will be important

also.

stinecose ¥ 8
——7 . 2L =
X stinza—P Ex Nz—s

(2.26)

HINB:I

where P, D and S are defined later in Eq. (2.58). The square of

S)
these ratios is represented in Figure 2.5, using the standard approximation.
E

They increase monotonically from 6 = 0 to 8_. As @ = 8_, LR cotanf_,
E R R E R
AN 0, and the wave becomes longitudinal (E//E) and linearly polarized.
X E
For A << 1, —~—] -+ p at resonance, that is the parallel component of

X

the electric field stays small compared to the perpendicular compohent.
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C. MAXWELL-VLASOV DESCRIPTION OF THE INTERACTION

To deal with an ensemble of particles we introduce the particle
distribution functions fS(E’E’t) where subscript s refers to the type
of particle. We chose a momentum variable P in order to include
relati§istic effects. Assuming no collisions between particles, Liouville's
theorem implies that each distribution function is conserved as time

elapses:

I Q.

" fS(E’E’t) =0 (2.27a)

jo

Equation (2.27a) when expressed in terms of partial derivatives yields
the Vlasov equation:

P
—_— —_— ] = 2.27
0t MS St Y E + m > 0 ( b)

—_ ) —

In the last equation, the force term 1is written explicitly (lorentz
force law; we assume only electromagnetic forces are important).

The solution of the self-consistent system of Maxwell and Vlasov
equations is the solution of the wave-plasma system. The precise form
of the Maxwell set depends upon whether the plasma is regarded as a
collection of particles in free space, or as a dielectric with an
equivalent permittivity.

The Maxwell equations written below show the relationship between

one description and the other one:
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Description as particles in free space: Dielectric description:

TE = - S B TE - - % B
5 3
D= FED Lt T DU = 5D+ L
v'B=0 7:B=0
vD=p+ pext Z'E = pext
D = 6 E "D = ei-E
B =yl (2.28a) B=yH (2.28b)

In the preceding sets of equations, pext and Eext represent external

particle and current densities. We need also the charge relations:

3
z ag ffsd p (2.29)

s

=
Il

[
I

P 3
T qsfM— £.d"p (2.30)
S =

In the context of the linear theory we assume that the wave is a
small perturbation which causes & perturbation of the particle distribution
function which is small with respect to the equilibrium distribution

function which exists in the absence of the wave:

E = 0 + El(z,t)
B =B+ B (zr,t)
fs = fOs(p) + fls(i,g,t) (2.31)

3Strict1y speaking, this expression is wvalid only for plane waves. If
the medium is homogeneous and stationary, the most general linear
relationship between D and E is a convolution whose Fourier-Laplace
transform yields this expression (cf. Quemada [1968]).
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Assuming the medium as infinite, we can Fourier transform fields and
distribution functions in space. Llaplace transform is used to transform
the time variable. Use of the Laplace transform introduces the physical
principle of casuality (the perturbation is considered as beginning at a
given time). This conditién, initiated by Landau [1946], enables one to
give a sense to some integrals otherwise indefinite. After transformation

the kinetic equation reads:

fls[g,g,w] = gs[E’R’w]'El{E’m] + i.t. (2.32)

{(i.t. stands here and hereafter for initial terms involving the spatial
Fourier transform of quantities at t = 0).

Square brackets are used to distinguish spectral functions from
functions in the space-time domain. A transform pair is defined by:

(=] 0

£k, p,w] =f o 1E'L darf at "% (r,p, ) (2.33a)
—o 0

£(r,p,t) = — 5 f d3ke€15'3f dwe'glmf[g,g,m] (2.33b)
(2r) —co W

(similar transform pairs are defined for the electromagnetic field).
The quantity { = *1 1is introduced to take care of the twe most common
conventions in the literature. The contour W 1is a straight line parallel
to the axis Rew and lying above (for ( = +1) or below (for { = -1)
the poles of the integrahd in order to conserve casuality in the system.

gs is an operator whose expression is determined by solving the
coupled Maxwell and Vlasov equations after linearization.

The current relation is

i1 =2 qs
s

1N .
EII@
o

iy
o
(%]

P = Q[E:m] 'El[E,m] + i.t. (2'34)
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where the components of the conductivity tensor are given by

p_Q
a'b 3
Gab =% Cis f m dp (2.35)
8 C s

where C 1is a mapping of the contour W. It has been introduced hy
Landau [1946] in order to facilitate the integration of Eq. (2.35) (sece
Stix [1962] for example).

In both descriptions (particles in free space and dielectric

description) the first Maxwell equation reads;

Exgl = a@l + i.t. (2.36)

while the second equation, written differently in each description,

defines the equivalent dielectric temnsors X:

‘E. o+ di.t. (2.37)

) . . w
- kxB. = = El + glpoil + i.t. = 5 1

1
c

{1

0

From this equation we deduce the equivalent dielectric tensor

glk,wl

}:\f[ ,w] = é - E—la'z"(;—- (2.38)

The elimination of vector El in both Egs. (2.36) and (2.37) yields

the wave equation:
Alk, 0] -E, [k, @] = S[k,w] (2.39)
where S takes into account a2ll the initial terms, and

A . =NN -NB& _ +¥X (2.40)

ab
where the refractive index

N=2k. (2.41)

Ele

The electric field solution is obtained from Eq. (2.39):
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o A 0l -5, )
B Ikl = )7 kel -skel = =

Dlk,w] ’

where

Dlk,w] = Det(p) . (2.42)
By inverse Fourier-Laplace transform of Eq. (2.42), we arrive at the
solution for El in the space-time coordinate system. By the residue
theorem (assuming the components of 8 to be entire), the only contribution
to the integral of the inverse transform cbmes from the poles of the
integrand, that is, the zeros of the denominator.

The equation which gives the zeros of the denominator in Eq. (2.42),

i.e., plk,w] = 0 (2.43)

is called the dispersion equation. Its solutions define the wave modes

of the wave-plasma system. Equation (2.43) can be satisfied for complex
values of k or w {(in fact to be consistent with previous convention

w has to be considered in general as complex). For instance a complex
value of o for real E means either wave growth or damping according

to signs of mi = Imw. If gwi > 0, the perturbation will grow without
limit with time and the distribution is unstable. However, the fact that
the perturbation can grow with time is not enough to determine the

spatial characteristics of the growth. The perturbations are not single
monochrcematic plane waves but a superposition of them given by the
Fourier-Laplace integrals (2.33a,b). A single frequency may grow exponen-
tially with time but the amplitude of the wave packet as a whole may
remain finite at a fixed point in space. This leads to the distinction

of two kinds of instabilities, "convective' and "absolute” (or nonconvec-
tive) instabilities. 1In convective growth, the wave packet is amplified
as it moves along (that is, at each point in space it first grows and then
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decays), whereas in the second case it grows without limit in each point
of space as t — . For further discussion, see for instance Akhiezer

et al [1967]. This distinction has been discussed by Sturrock [19587.
Rather involved criteria have been developed to distinguish between the
two kinds of instability [Briggs, 1964; Derfler, 1967, 1970]. For the
first kind of instability, the medium acts like an amplifier, whereas for
the second case, it works like an oscillator.

The work of Lee [1969], and Lee and Crawford [1970], though
restricted to strictly parallel propagation, showed that in the magneto-
sphere absolute instabhilities appear to occur only under extreme condi-
tions. Therefore, we shall assume hereafter that we deal only with
convective instabilities. For convective instabilities it is immaterial
whether we consider w real and k complex or vice versa. Provided
|k,| << lk| and || << ®, it can be shovn that k, and o are

related by the relationship
w., = =%k, v (2.44)

where Eg is the group velocity of the wave packet. The physical content
of Eq. (2.44) is that u& describes the wave packet amplitude variation
in the wave group velocity frame. Convenience will dictate the choice
of the complex variable. For present purposes it will be more convenient
to discuss gain rates per unit distance whereas in ray tracings
parameterized in the time variable, it will be more convenient to work
with gain rates per unit time.

We derive in the next section the expression giving the growth rates
of small amplitude waves propagating in a magnetoplasma composed of a

cold plasma permeated by a tenuous energetic particle population.
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D. GROWTH RATE EXPRESSIONS
In order to derive the dispersion relation for our system it is

first necessary to determine the temsor }. The derivation of the

expression of } is somewhat lengthy but does not present any particular

difficulty. It has been given in a number of textbooks [Montgomery and

Tidman, 1964; Bekefi, 1966)] and we do not repeat it here. In general ¥

can be expressed in the form (where we have explicitly derived the

relativistic form):

[=+]

(o]
© f f dp, E(p”sp_l_)
v 5 27 dp =+ (2.45)
8 0 N O

K=1-%
bt - s 5=t =] -0
where:
1 1 1
P =V(p”,p) T p gl 3
I~ Rm 1 I Rml 1 Rm2
m f2 2 2
”P”+ A pO + DO + pL + Py
Vip ,pl) = =
! EV/LEL——-pz + {1 - L )(p2 + pz)
2.2 0 ) ) L
ANy Ny,

In Eq. (2.45) the expressions for p are as given hy Eg. (2.1C),

Rml, 2

provided in the expression of N = kc/w, > 1is considered now as

complex. In the non-relativistic limit V(ple,pL) -1, V(p ,pL) = 0,

Rm2

and p - pRmO’ with p given by Eq. (2.12) (where again « must

Rml RmQ

be considered as complex}.

In Eg. (2.45)

.-[:[-_s‘

léu

and
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’ mnJ
me 9 ; meJm 2 n
;—"" p.L ggs 3 pl a p“ p.L
5 s ]
LD S 2 2
= - i 4 - iy Jf 2.46
gs £e 1 2 P ) P, SEIED I M PP ( )
2
me 2 9
— s ? J
aS p“pl Cgleme Hlpl m i
where g, =*1 and Jm and Jé are the Bessel functions of order m

¥

and their derivatives of argument:

a = =+ (2.47)

U 0 0
s
U = H 0 ,
:S s
0 0 Ul

% %,
S
Us = (Msw-h'gl) —EEI * E'pl _35— '

agOs maﬁs ( agOs agOs )
- p" )
L

= - .4
Ulg = M0 —55; Mg P, _55; P, (2.48)
where I is the equilibrium distribution function of particles of
species s normalized to unity:
e a% - (2.49)
Bos O P = :

When gy can be represented as a relatively high density cold plasma
background permeated by a relatively low density energetic particle

distribution (as is the case in the inner magnetosphere), then we can

write
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€0 = Boc * Eom
(2.50)
f 3 3
d
gOH d p << gOC P
and use the approximation:
fu(p“) fw u(p,)
————dp, ~ P ———— dp  + Cin-u(p, )
- N —_
P PR ‘s P pRm ! Rm
(2.51)
I > 0
¢ Impe

and its analytical continuation in the other half-plane in the Landau sense.
P means that the principal part of the integral, in the Cauchy sense, has
to be taken and u stands for an arbitrary function of p . Inserting

the expression of p given by Eq. (2.8) into Eq. (2.48) we find:

Rm

U =— - U . (2.52)

[ f = H t
xz'yyz sz’ he

and in this case the Onsager relations hold (sz
relation ¥ =X was already fulfilled).
Xy VZ
Condition (2.50) enables one to develop Eq. (2.43) in the form

[Kennel, 1966]:

D[k, w] ~ DO[E,w] + Dl[E@w] = 0 (2.53a)

where D0 is the cold plasma dispersion relation (given later by Eq.
(2.57)) and |D1| <L |DO[. Since the energetic population is dilute,
the real part of the refractive index is determined by Do[kr,m] =0

(see Appendix C). Assuming real « and complex k, Eq. (2.53a) is

rewritten as

3n,,
DLk, + ik, ,wl ~ Dok o) + ik, - 3k
+ Re {Dl[gr,w]}+ i Im {Dl [Er"”]} =0 (2.53b)
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which shows that:

ano
k, . agf = - Im Dlr {(2.54)
where Im D.[k ,w] 1is rewritten as Im D for short.
1 —r 1r
Now,
v = - Py [ P (2.55)
g~ ok o .
oD
that is BE— is colinear with Xg and Eq. (2.54) enables one to evaluate
kig (component of Ei along Eg), which is the physically meaningful
quantity since wave amplitude gain has to be evaluated along the ray path.

dD
0
It can be shown that EE;-> 0, so that, according to Egq. (2.55)

s ano

—i 55 Im Dlr

k. = (2.56)
ig aDO 3 \2 3. \2 1/2
3K o) + 12
, — ok 5kl
where:
4 2

D0 = ASN - BSN + CS (2.57)

where A_, B_ and CS are the parameters introduced by Stix [1962]:

2
AS = sinze + P cos & ,

2
B, = RL sin28 + PS (1 + cos 8) ,

S
CS = PRL ,
1 1
S=§(R+L)’ DS=‘2"(R"‘L):
w w
R=1-%v 5% Cw ' L=1-2Zv, 5= o 7
s s cs s s cs
P=1-%vy ; (2.58)

s
5
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so that:

Im Dlr

k =
ig 2 Ne
) - ==
IZASN BSI

c(:osqg . (2.59)

If time gain is more appropriate, it is immediately given by Eq. (2.44),

i.e.,
o = - ‘v | (2.60)
i igl—g
where
Vo= e e -+ 0 e ‘ (2.61)
Ze T 3aN) |k "2 38 -8

and e and e are the unit vectors along and across k respectively.

Zk =g
With condition (2.50) we have:

h

=

g with || << s (2.62)

=

a
where Mh and Y are respectively the Hermitian and antiHermitian part

of the dielectric tensor:

I

L 2nd® t

2" = (2.63)

I ES
1=
Il
1=
1
=

where + denotes the Hermitian conjugate (complex conjugate of the
transpose). With Eq. (2.83):

a 2 2 .2
Mxx (S-N")(P-N sin" @)

Im D1r

+ H?y [(S-N2cosze)(P—stinze)-N4coszesin29]
a 2 2 a 2. .2 A
+ Mzz [ZDS(P-N sin G)J—sz[2(S—N )N cos8sing]

a 2 . 2 a 2
2gDs[Mxy(P—N sin" B) + EXZ(N cosgsing)] (2.64)

and with approximation (2.51):

a 2 YS m=—e o 2
X =-CE% z ']. T J (p, »pJU (p. .,p d)V{p, .,p ddp
- s k|| m=—c 0 im=1 = Rmi "L% s TRmi oL Rm1 "L 1

(2.65)
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s¢ that:

21 YS -] fs ) 2
ImD, =~ % Z f U (p, P, IV(p D)
ir s k" N 0 i=1 s ""Rmi Rmi "~ 1
2
mJ mJ J'
2 2 2
p> |cs-¥?) e-¥Zs1n®) (——m) + 2¢_D_(P-N“sin“g) —T =
ik a s 8
5 s
2 .2 4 2 2
+ pf [(5-N°cos28) (P-N'51n"8) ~ N'cos”8] (1)
2
2 . m m 2 ;
- 2pRmipLN cosBsing as (5-N ) + gstJme
2 2 2 2 2. 2
+ Pomi [(8§-N cos B)(S-N) - DSJ I dp, (2.66)

Apart from the relativistic correction and the simplification (2.52)
this expression has been derived by Kennel [1966]. Equation (2.66) has
been further simplified by Brinca [1972] by making use of the cold plasma
dispersion relation rewritten as:

[(S—Nzcosze)(S—Nz)—D:](P—stinze) = (s-N2)NsinZcos28 . (2.67)

Using Eq. (2.52) brings still further simplification compared to
Brinca's expression (enabling one to use once more Eq. (2.67)) and Eq.

(2.66) can be cast into the compact and relatively simple form:
) - 2 2
ImD, =T % j; El Vipp P, )0 (pRmi,pl)Us(pRmi,p_L)p‘L dp,

Mm=-cc 1 ms

where:
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2 N -P
Tt Ys 1
r=-{% 5= 35— ° H=— )
s w Kk, |H N°-5
® =(_.J c 3 2 mio
ms = ml m-17 “m2 m+1” !
@ = 4[M eN J + D Hp J. ] l—
Os s L0 gs s P11 2
Py
A i
2 2 s 2 2 5
= - = - = - — -1
le H(N LS) + N_L ( m ) » sz H(N RS) + N_L (m ))
4
R .=RL, L . =LR. (2.68)
e,1 e,i

The expression of kig is easily obtained by inserting Eq. (2.68)

into Eq. (2.56) or Eq. (2.59):

2 @
11:2 coso;g wbs @ 2 5
kig =0 3 Tose z > ) _E VP, 1,pL)®ms(pRmi,pl)US(pRmi,pl)pldpl,
g N“FH m=— “0 i=l
1/2
4
F = [(RL—PS)zsin 6 + 4P2D§cosze} (2.69)

It can be shown that V(pRmi’pl)’ i=1,2, are positive-definite
quantities, therefore the integral in Eq. (2.69) is positive-definite.
Furthermore the quantity H is positive. Therefore Eq. (2.68) facilitates
a straightforward discussion of stability. The distribution function go,
being a solution of the Vlasov equation, can be expressed according to
Liouville's theorem in terms of invariants of the particle motion. In
the magnetosphere the simplest choice of invariants is p (we assume no

sing,

dc electric field) and the first adiabatic invariant —— {(where

7/

b= IBO/EOE] is the dc¢ magnetic field normalized to equatorial value).

4Notice the inversion between R and L according to the sign of the
particle charge. We have defined as m = +1 the rescnance at Barallel
propagation for either sign. In that case only C # 0 as N -R_ =0
elgher for normal electron interaction (N R) or %or normal ion 1ﬁteraction
(N“= L).
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Therefore it will be more convenient to express US given by Eq.

(2.48) in terms of derivatives with respect to p and sing:

U=Mowl|si agos 1 agos (—sinza + 3 {(2.70)
s~ Vs " 3p t p S(eina) Ag )

If we now assume that the energetic component of the plasma consists only
of electrons whose distribution function decreases monotonically with

energy 6598; 0 (see Section 3B) and increases monotonically with pitch
0

ang le (-ETEEEET > 0), we reach the following conclusion concerning
stability:

1. Landau interaction: m = ¢, always damping (U < 0 always)

2. Ancmalous gyroresonance interaction: m < 0, always damping
(U < 0 always)

3. Normal gyroresonance interaction; m > 0, U can be > 0 or
< 0 and there will be accordingly growth or damping; because of
the positive term m/A in Eq. (2.70)}, small values of A
will favor growth [Kennel, 1966; Liemohn, 1967]. Isotropic
distribution (ago)/a(sina) = 0 cause only damping.

For parallel propagation (kl =00, aS = 0 and all Bessel functions

are null except J that is, only the term m = 1 1is to be considered.

o’
Kennel [1966] found that the gain is maximum for parallel propagation for
low frequency waves though a thorough investigation not restricted to

only very small frequencies may yield an opposite conclusion [Brinca, 1972].

Within the standard approximation, Eq. (2.69) can be written in =2

simpler form (neglecting ions):

SEL 73-043 42



CTr2cosa |pI w© @m
Kig =~ 2 cos8 2 % 2
18 N M=—m 0 Cocos
= = 0) = ,
€, = € ;(8 = 0 = 2[P|
c c =% (t.+ t), t,= ltcos®
ml, 2 0 2 1 277 1 ’
2
S (¥, P
2 TﬁT P o~ cosg Jl .
C0 L

Expression (2.71) is valid in the context of the

mation and for arbitrary frequency (provided

vicinity of both the 1LHR and the resonance cone).

simple as the low frequency approximation (A

There are two differences between Eq. (2.71)

2
8 UmpLdpL’
2 .2
_A'sin 8
to = (Gosbpom ' " £0,
(2.71)

standard approxi-
the wave is not in the
It is practically as
<< 1) of Kennel [1966].
and Kennel's expression:

C

the coefficients ]2
given already by Kennal“and

1. For the cyclotron harmonics {m ¥ 0),
are now the sum ofi two terms: ¢_,
a new term t2 which increases with 6.
2. For the Landau interaction (m = 0),
involving J_, given by Kennel, and

1

let us test the validity of Kennel's [1966] approximations.

Gendrin angle 8 for low frequencies:

G}

_pa-apd)

m

by

and still can be considered as small compared

1+ 20 ~ 1

But this is no longer true when 8 — BR,

is the dominant term and t1

43

A~

can be neglected.

3 is now the sum of a term
a new term inveolving JO.

At the
A
o (2.72)
to the first term
. (2.73)
where on the contrary t2

Therefore Kennel's
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approximation for the cyclotron harmonics is valid for 8 < aG but noet
for 8 > GG-

Neglecting the first term in ®0 is more drastic because by
expansion of Jl' both‘terms in @0 are of the same order (in small
A or small &). This point requires further investigation with respect
to Kennel's [1966] conclusions (see Section 3E).

It is possible to give a physical inéerpretation of each term in
@, The first term corresponds to the "classical” Landau interaction.
It is a result of the action of the parallel component'of the electric
field upon the motion of the particle. The second term corresponds to
"transit time’' Landau interaction. It is a result of the presence of a
non-zerc parallel component of the magnetic field for non-parallel
propagation [Stix, 1962]. This component acts on the particle according

to the equati
o] e eq ion av 3B

M2 — - Z
at - "M 3
2 . . ;
where . = MVL/ZBO is the magnetic moment of the particle. Note that
both effects tend to disappear when /) - O.

When H
g = SR

2 A
le - Cm2 cm - NL m’
2
Py
@m = 2Nl ;— Jm , for all m . (2.74)
L

In the next chapter, we will obtain quantitative values of kig by

choosing realistic models of distribution functions in the magnetosphere.
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I1II. VARIATIONS OF GAIN RATES WITH MAGNETOSPHERIC PARAMETERS

A, INTRODUCTION

The variations of whistler wave amplitudes caused by wave-particle
interaction depend upon both the cold plasma and hot plasma distributions.
Although models'of the cold plasma are fairly extensively known, mainly
from nose whistler measurements (cf. references of Chapter 1), energetic
particle distributions are much less known. Both for lack of information
and for computational convenience only simple models of hot plasma will be
considered here. Limits on these models will be set by whistler observations.

The purpose of the chapter is to study in detail the variation of
wave amplitude gain with respect to various magnetospheric parameters.

In Section B we review models of the cold plasma as deduced from
nose whistler measurements, and a few energetic particle measurements.
The assumption of parallel propagation has played a considerable role in
whistler analysis, in part because the first whistler observations were
made on the ground where only ducted whistlers could be recorded, and in
part because of substantial simplifications in the analysis. In Section C,
we study in detsil the variation of wave gain for parallel propagation,
agsuming that the class of distributions is similar to that chosen by

Liemohn [1967]:

F(W,q) = W Y Sinqoc (3.1)

This model has several advantages. It is mathematically simple. The
energy variation is reasonable, compared to particle data. As of now,
no experimental data have confirmed the pitch angle variatioﬁ, but a
general pitech angle distribution can be decomposed as a superposition of

such functions.
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The model (3.1) is most likely oversimplified. It assumes separ-
ability in energy and pitch-angle. This simplification is relaxed in
Section D where we study a more general class of distributions that are
nonseparable in energy and pitch-angle. This new class of distributions
can have radically different characteristics from the previous class.

In Section E, we make a detailed study of the variation of the
gain with respect to arbitrary angles of propagation and frequency, and

in Section F, we review the important contributions of the chapter.

B. PARTICLE DISTRIBUTIONS IN THE MAGNETOSFPHERE

1. Cold Plasma Distribution

Inside the plasmapause, the cold plasma distribution has been

very successfully described by the diffusive equilibrium model of
Angerami [1966] (see also Park [1973]).

Apart from the vicinity of the top of the ionosphere and beyond
L z 6, the full model with three types of ions and a gravity term does

not differ significantly from the following idealized model:

R R R
1 1 1
n = nE exp Eg (;-— - 'ﬁ-) (3.2)

E

Subscripts E and 1 refer respectively to equator and base level

(1000 km altitude),

n = density

r = geocentric distance

R1 = geocentric distance at 1000 km altitude

RE = dipole magnetic field equatorial geocentric distance
HH = hydrogen scale height = KT/MHg1

K = Beoltzmann's constant
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-
Il

temperature

g acceleration of gravity.

To complete the description of the model, we need the equatorial
density profile. C. G. Park [private communication] has established an
average equatorial profile based on whistler measurements in the month
of June, 1965. It is given in Figure 3.1 (solid line). An equatorial
density decrease as L for Lji 4 and as L_4 for L 2‘4 seems to
fit closely the acfual variation. Conteours of constant fg = uﬁ/&h are
plotted in Figure 3.2, assuming an average variation nE(L) = L—s and
ng(4) = 250 en™>, to which corresponds 8g(4) ~ 10. Using values of
@ given by the figure, one can deduce from Figures 2.1 and 2.4 the
_ minimum energy of resonance for cycletron and Landau interactioné at
each point of the plasmasphere. This is a very useful quantity to know,
since the number of particles available at a given resonance‘provides an
estimate of the importance of the resonance. Since me o n—{ it is
a simple matter to deduce WRm from a density profile different from
Figure 3.2. It can be seen from Figure 3.2 that the standard approxi-
mation is valid practically everywhere inside the plasmasphere. A few
values of W__(A = 0.5, § = 0) are given in the figure.

R1

Outside the plasmapause, a completely satisfactory model is not

yet available though the collisionless model of Angerami [1966! seems
reasonable. This model is close to an r_4 model. With such a model
the contours of constant B are plotted on Figure 3.3. assuming
nE(L) o L_4, and nE(4) = 10 cm_S to which corresponds BE(4) ~ 2.

2. Hot Plasma Distribution

Most of the early particle observations in the magnetosphere

were obtained with instruments (such as Geiger tubes or scintillation
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FIGURE 3.1. EQUATORIAL ELECTRON DENSITY PROFILE DEDUCED FROM NOSE
WHISTLER DATA ASSUMING A DIFFUSIVE EQUILIBRIUM MODEL
(SOLID LINE, C. G. PARK, PRIVATE COMMUNICATION) AND A
COLLISIONLESS MODEL (ERROR BARS FROM ANGERAMI [1966]). The dashed
curves show comparison with 1L™2 and L™ models for the D.E. model
and with an L% model for the collisionless model.
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counters) capable of observing electrons only above an energy of ~ 40 keV
(see review in Hess [1968] and also Russell and Thorne [1869] and
Vasyliunas [1969]1). Now the bulk of whistler-electron resonance inter-
action occurs within the energy range 100 eV - 40 keV, at least inside

the plasmapause and knowledge of particles in that energy range is
essential. However, information on the particle distribution in this
energy range is still meager.

As of now, to the author's knowledge, the only published data of
differential fluxes of 100 eV - 40 keV particles are from Schield and
Frank [1970]. We have reprinted on Figure 3.4 two of the figures from
this paper which show fluxes observed during times following a long
period of low magnetic activity. The features of the distribution
functions seem fairly repeatable.

Let us focus our attention on the plasmasphere spectrum. Above

~ 1 keV, the distribution function falls off smoothly like ~ lg (see
v

Figure 3.4). There is a flattening of the distribution in the 500 eV -

. 5
1 keV range. In the lower energy range (W < 500 eV}, the spectrum

®Confusion may arise in the term "spectrum.” Let us be clear about our
definitions. The number of particles in a given velocity range is, by
convention: 3

dn = f(v)d v

where dn is the number density and f£{v) is the "particle distri-
bution function." For comparison with data, it is convenient to define
the "particle distribution function in energy F:

dn = F(W,Q)den
where [} is the solid angle. Experimentally, the current density is
mespured in terms of the gquantity:

3

dJ = evi(v)d v

from which the differential flux d§ is cbtained:

dJ
edwd()

d@ = = VF(W,Q)
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becomes softer with f(v) e« ~ 17-. For further details, the reader is

v
referred to Schield and Frank [1970].

C. PARALLEL PROPAGATION FOR A DISTRIBUTION SEPARARLE IN ENERGY AND
PITCH ANGLE

1. Introduction

Parallel propagation has played a considerable role in whistler
stability analysis (e.g., Scarf [1962]; Tidman and Jaggi [1962]; Liemohn
and Scarf [1962a,b, 1964]; Guthart [1964, 1965); Liemohn [1967, 1969],
to limit ourselves to work explicitly related to whistler gain in the
maghetosphere). One reason for that choice is that the first observa-
tions were made before the satellite era and in that case only ducted
signals could be cobserved. Moreover the abundance of ground data proves
that it is a very important case. Therefore the parallel propagation
approximation is a valid approximation for all ground whistler data,
at least as long as cold plasma propagation is concerned. A second
reason is that the gain expression (2.69) which is rather complex

gsimplifies considerably for parallel prepagation. It ;educes to:
=]

nz u%s 2
k. == 52 f dp p T v, ,t (p } (3.3)
y 1g 2 S a?Nz 0 11 1,2 1,2 s Rm,p_L

In the standard approximation and neglecting ions Eq. (3.3) is

rewritten following Kennel and Petschek [1966]:

and the change of units is the following:
2 -1 5
dé [(em xseexsrxeV)y ~1 = 1.76%10° (vF) [C.G.S.]

Note that: f = vF ,

dd e sz -

1 .
When we discuss a spectrum — — , there may arise some confusion about

A
whether we mean £, F or d%. Unless otherwise specified, we will
always implicitly define vy as the energy parameter of the "spectrum’
associated with the distribution function f(v).
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2 2 @

k19 (J.)p 1
¢ =P 1-(>2-1)a4 a .
Kig =& 32 Mo® [ (f- D KP].Z: goP, P,

R
02
f sing, ago p dp
A - 0 d(sing) "L ‘41 (3.4)
Kp fcn
2 g.p dp
0 01 "1 R

Equation (3.4) shows that

A
- TH ,
AKP(A) > gop = GROWTH
A, () < =L o pampIng,
KP 1-p
A (A ) = o MARGINAL STABILITY ( k. = 0)
KP ''st” ~ l—Ast noig
or hgp = Aep )/ T1 + A (AT . (3.5)
Therefore AKP must be at least positive for amplification. AKP

is related to the sign of Ergggai through Eq. (3.4) which shows that
isotropic distributions (ETEIHET = 0) always yield damping (AKP = 0).
The same conclusion is reached a fortiori for distributions withag
3TEI%§T < 0 everywhere (AKP < 0). Only distributions with ETEE%ET >0
somewhere may cause amplification. For such distributions and because
T%K is an increasing function of A, generally low (high) frequencies
will be unstable (stahle).

With a simple choice of distribution gOH o p_vsinqa, expression
(3.4) can be expressed in a simple analytic form. We are then able to
discuss relatively easily the variations of the whistler gain rate with
various magnetospheric parameters. This discussion is presented in

Section 2.
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2. The Variation of the Gain with Various Magnetospheric Parameters

For 3 Distribution «= p_vsinqa

We represent the distribution function by (see Eq. {2.50))

80 = 8oc t Eon’
A . q

1 _ . s} v=3 8inQ

g = a4 NPPylby; /2 By v
8
1 EH & (p) -3

_1 - - ) 3.6

€0c © 4x (1 bq72 60) o2 + 385Py (3.6)

where b = magnetic field normalized to equatorial field value, pl

corresponds to some convenient normalization energy Wl (we will use

later 100 eV unless otherwise specified); § = nE(W > Wl)/nE(W > 0).

El
H(p) is the Heaviside (step) function introduced to 1limit the total

2
number of particles. The quantity p is chosen >> (MOKT)l/ to insure

H
both that § << 1 {(where & = nE(W > WH)/nE(W > 0)), and that the

EH EH
temperature correction need not be included in the cold plasma refractive
index [Montgomery and Tidman, 1964]. The condition GEH << 1 is necessary
to validate the treatment of Chapter 2 used to find the complex root of
the dispersion function. In these conditions it does not matter what 1is

the precise functional form of which we represent conveniently

goc!

y represent particles

by a Dirac distribution &(p) plus a term § p
from thermal energies ( ~ .1 eV) to 10 eV. This assumes a constant
distribution in this last energy range, an assumption which may be far
from the true physical representation. However since our results are

insensitive to the exact form of in this energy range we feel this

€oc
representation is as adequate as any.

A general function of pitch angle can be expanded in Fourier

series in terms of sin{ng) and cos(np), where n 1is an integer. It
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is reasonable to assume symmetry with respect to the plane o = ﬂ/z
(particle mirroring back and forth along the field line from each side
of the equator). Thus the distribution function is expandable in terms
of sin(2np—0) and cos{2ngy) which can be developed in turn in powers
of sint. Therefore we will consider ¢ as an integer, while vy is
arbitrary. (In the following for mathematical convenience, we will

derive expressions explicitly when g is even.) The normalizing condition

requires: \ - 2d n/z )
Sl X [ s =1
v p, pY 0
or.:
a/2
A =2(v=3) N (a+1/2)/(a/2)% , q even. (3.7)
v a=0

The coefficient Avq increases with both the energy parameter v
and the pitch-angle parameter gq. For a given energy spectrum, the co-
efficient A\)q must compensate for the increasing loss of particles at
low pitch angle for increasing anisotropy. A simllar conclusion is
reached for the case in which the anisotropy is given and the spectrum
softness parameter v 1is increased.

From Egq. (3.4), it is immediately seen that

q
Arp =3 (3.8)

AKP is in this case independent of A and there is correspondingly

one single frequency of marginal stability:

K¥P q
A = = (3-9)
st 1+ AKP 2+q

the low frequencies A < Ast are unstable and the high frequencies
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A Ast are stable.

Inserting Eq. (3.8) into Egq. (3.4) yields:

V-3
k, P
ig) _n /27, (1 _,) 2] |2
('E") T chqéElb {1 (A 1) 2] D ’
0 R
a/2
c =&-3 I [(a+1/2)/(a-1 + v/2)1, a even,
va _
a=0
hA=1
= . 3.10
i PR o NA Po ( )
In Egq. (3.10)
C =A B ’ (3.11)
va VA g
-2 sin g
B =]p|" f p,dp = (Q/Z)'-/ 2 M T[a-1 + v/21}], g9 even.
vd |" R' 0 p’ SR a=0

The coefficient Bvq decreases with parameters y and ¢. This

expresses the fact that

-]

B f d 3.12)
v e« A EoP,' pl (

R
is a measure of the number of particles availahle at resonance.'

Clearly, for increasing anisotropy the average energy of a particle
at resonance increases for a given minimum energy of resonance, that is
the number of available resonant particles decreases. The same conclusion
holds for increasing spectrum softness; Now, as opposite conclusions were
reached regarding the coefficients Avq, there is a cancellation effect

between A and B and the coefficient C stays fairly constant
vd v vd

for different values of the parameters  and (.
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The expression of ”(ki/k) is somewhat complex with all parameters
intricately mixed. There are two geometrical (space) parameters, 1 and

%, one wave parameter J, and three hot plasma parameters § and

E1’ v
q. The first three parameters influence the cold plasma propagation
characteristics. Therefore the gain rate is an intricate combination of
wave frequency and both cold and hot plasma parameters.

As our main interest lies in comparing gains with data, it will be

more useful to express gainsg in terms of decibels along a certain distance

Su (1000 km for instance). Let us call this quantity Gu:

Ab ( ig)
= - .686 k ~ - = .
uGu C 8.686 I igsu 1608 3 u\k nN (3.13)

=

From Egqs. (3.13) and (3.10) we can study the variations of HGu with all

the magnetospheric parameters.

First of all, uGu is directly proportional te the density of hot
particles as expressed by the parameter 6E1' This is a characteristic of
linear theory in contrast to nonlinear theory [Sudan and oOtt, 1971;
Helliwell and Crystal, 1973]. 1t is very important to emphasize the
normalization of the density of hot electrons we have adopted and we will
use throughout. We have chosen to keep 6E1 constant (ratio of number
of hot electrons above 100 eV to number of cold electrons) for a given L
shell value. This is in contrast with previous normalizations (e.g.,
Liemohn [1967]; Kennel and Thorne [1967]; Thorne [1968]) where the
choice was to fix s normalization energy of the order of 10 keV or more.
The reason for normalizing at such high energies is that at that time
only fluxes above a few keV were known. With the more recent measure-

ments of Schield and Frank [1970], fluxes down to 100 eV are known. There

is an essential difference between these two types of normalizations which
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is as follows: +the bulk of resonant cyclotron energy is between 100 eV
and 10 keV and therefore for the previous choice of normalization, a
softer spectrum means usually more particles at resonance in contrast to
our normalization. This difference is clearly shown in Figure 3.5.

For a given value of }, the equatorial gain is

-9 nv/z—l

-3 -2 3v
. .14
”GuE(L) o= 6E1(L) L ”NE (L) = 6E1(L) L E (n (3.14)
. ., -3
With a wvariation nE = UR PR
G (L) = &__ (L) 3v/2-6 (3.15)
n uE El
For a hard spectrum (v = 4), GuE varies like 5E1(L) and for softer
I
spectra, G p 1increases with L more rapidly than GEl(L). There is no
I

detailed information as how §__(L})} varies but the data of Schield and

E1l
Frank [1870] suggest that the number of hot particles stays fairly constant
across different L shells and it is reasonable to assume that either
6E1(L) increases or at least stays constant with T.. For a ducted ray
path over a complete field line we have to multiply ”GuE(L) by a factor
roughly proportional to L. All these factors add up to indicate that

the gain rates are increasing with 1. This hypothesis appears to be
supported by observation. TFor instance Dunckel and Helliwell ([1969]
observed that inside the plasmasphere emissions are more frequent close

to the plasmapause. Conclusions would be roughly the same for a variation

nE o L_2, L , and therefore outside the plasmapause as well as everywhere
inside.

Now we look at the variation of the gain with latitude 3}, keeping

A constant:
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V=2 -2

uGu(k) = bl—q/2( HEL.) = b3—q/2~v (E_) (3-16)
E

N n
nE.

”Gu(k) depends now on q. Away from the equator the gain rate wil
decrease because of the factor qu/z in Eq. (3.16) for an anisotropic
distribution. This fact is simply a consequence of the first adiabatic
invariant law. The parameter v affects the gain variation quite
differently inside and outside the plasmapause. Inside the plasmapause,
n(k)/nE ~ constant and the gain decreases with increasing ) because the
regonant energy is increasing away from the equator. Therefore the number
of resonant particles decreases away from the equator. This effect,
combined with the particle decrease due to the first adiabatic invariant
law, yields a fast decrease in l Gu| with 3} as illustrated in Figure

3.6. Therefore the major contribution to gain is concentrated in a
relatively narrow latitude range around the equator.

Outside the plasmapause n(x)/nE ~ b and from Eg. (3.16); “Gu(x)
is about y-independent. The decrease of the gain is therefore much
slower outside the plasmapause but notice we have not yet taken into
acecount the decreasing of [ away from the equator and that |”Gu|
decreases with A for reasonably soft spectra (y > 5; see Figure 3.7).
Because of this supplementary factor, the gain is still relatively
concentrated arocund the equator.

In order to have a complete picture of the gain variation, it
remains to study its variation with  and g as illustrated in Figure
3.7. The values of the gain are high for a hard spectrum v = 4 but

decrease for softer spectra. Notice it is not teoe high for 5 and

reasonable anisotropy {(q = 2). As pointed out before the softer the spectrum,
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the less particles in the mid-frequencies (A ~ 0.5) because of the
normalization of the distribution function we have adopted (same number

of particles above 100 eV). This effect clearly overtakes the effects

of increasing slope. The qualitative behavior of the gain remains the
same for a given value of q (same number of marginal stability frequency)
and different values of + because of the factor [1 - ( L 1) %] in

A
Eq. (3.10).

D. PARALLEL PROPAGATION FOR A DISTRIBUTION NONSEPARABLE IN ENERGY AND
PITCH ANGLE

Up to now, we have assumed a very simple type of distribution. We
wish now to discuss the stability with respect to more general types of
distributions. OCne of the characteristics ¢of the previous type of distri-
bution is that it exhibits a single marginal stability frequency Ast'
Moreover for higher frequencies, the gain is a very rapidly decreasing
function of frequency. This has led several authors (Liemohn [1967];
Thorne [1968]) to hypothesize that whistler cutoffs in observed data are
caused by hot plasma damping effects. Almost invariably, careful investi-
gation has shown that cold plasma accessibility effects are a very
plausible alternative explanation [Carpenter, 1968; Edgar, 1972]. Even
in the amplification regime (A < Ast)’ the values of the gain predicted
by various workers lcocok very high compared with observations. It is
therefore interesting to investigate whether another type of distribution

might exhibit not a single frequency marginal stability but a broadband

marginal stability.
We know fairly well (see Figure 3.4) the energy law of variation
)

(< p ; however the pitch-angle law is unknown down to low energies (i.e.,

~ 100 eV¥). Pitch-angle laws different from those considered in the last
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Section are needed to yield broadband stability. A general distribution
5till separable and e p_v can be expanded in a series of the variable

siny. Therefore let us consider a distribution:

w0

g p"v T A sinqa . (3.17)
OH q
q=0
For such a distribution:
oo [en]
A = % gB %/é T B . (3.18)
KP q=0 v q=0 v
This shows that AKP is independent of pR’ that is of A. Such a
[

distribution would have exactly the same characteristics as that of Eq.
(3.1) with respect to stability and we can state;

lemma: a separable distribution in energy and pitch-angle with an
energy dependence e w ¥ and an arbitrary pitch-angle dependence

exhibits a single stability frequency.

Identical conclusions are reached with a8 function

A
gOHex(E ;%)sinqo,, a0 . (3.19)
AV

Therefore, a fairly general class of distribution functions
separable in W and ¢ yields only one stability frequency. In order
to look for a function which may yield marginal stability over a broad
frequency band {such a function may be thought to have in the 1limit an

infinite number of values J for which Gu = 0), we now consider a

st
nonseparable distribution in particle energy and pitch-angle.
This is a natural choice. We have seen that an isotropic distribution

yields damping for every frequency. The more the function is anisotropic

(the higher the value of parameter gq) the higher is the frequemcy J =
5
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Now high values of A correspond to low values of resonance energy, and
vice-versa. It is therefore expected that a broadband marginal stability
function is one which has a large anisotropy for low particle energy and
low anisotropy for high particle energy. Therefore, such & function must
have a pitch-angle anisotropy which is energy dependent. This can be
seen equally well in a very simple manner from the interaction of a single
particle with an electromagnetic wave propagating parallel to the static
magnetic field. This interaction is described by the constant of the
motion of the particle during the interaction (Eq. (2.19 a or b)) and its
graphical interpretation (Figure 2.2). For high resonance energy the
interaction results predominantly in pitch-angle scattering (with virtually
no energy exchange) whereas for low resonance energy both pitch-angle
scattering and energy exchange occur. Therefore if waves and plasma
constantly interact in the magnetosphere, as we have every reason to
believe, the shape of the particle distribution may eventually be con-
trolled by the process. This change of the particle distribution by the
interaction with electromagnetic waves is described (within certain limits
of validity) by the guasi-linear theory which shows practically pure
pitch-angle diffusion for high particle energies, but for low particle
energy, there is energy diffusion as well (e.g., Kennel and Engelmann
[19661). A criterion for making the difference between pitch-angle
diffusion only and both pitch angle and energy diffusion can be found in
Gendrin [1968], for example. Pure pitch angle diffusion can be considered
when:
Vp << v (3.20)
In view of the preceding discussion, the hypothesis of separability

in energy and pitch-angle may only be considered as valid for low
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frequencies of interaction (as given by the criterion Eq. (3.20) and may
be an oversimplification for higher frequencies.

The simplest choice of a nonseparable function related to the previous
calculations is to choose a superposition of functions e p“vsinqa with

different  and qg:

. q
g.. T T A SELLI A (3.21)

For mathematical convenience, we choose:

Ly
2
-3 exp[q(pl/p) 9gin o/ bl

A .
1 1P v
P

(3.22)

1
_gOH = I H(p*pH) &

(By expanding the exponential in series, it is immediately seen that this
function belongs to the class represented in Eq. (3.21).

The parameters v, ¢ and vq are chosen to match published particle
data. The parameters v and g have the same physical meaning as given

previously, i.e., vy expresses the energy variation of the distribution

function whereas ¢ 1is an anisotropy factor. The new parameter vq

expresses the coupling between energy and pitch-angle of the particle.

p
The normalizing condition is written with change of variable y = El
1 n/z
v
-1 . 2 -4 .
Al = f dy f exp(qy 9sin o] y\J singde {(3.23)
0 0

and by expansion of the exponential in series:

At L, 3 a” 27 n' (3.24)
= — ‘E — 7 .
1 V=3 oy V 3 + nyq (2n+1) 10
From Eq. (3.24) we obtain:
Ny =3
k. n P q
ig 1t ®  -nq/2 q 1 1
&)L b . 1-(= - — A
( K ) Cg80g = T Buiny L on G VR (3.25)
i n=0 q nR
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Inserting Eq. (3.24) into Eq. (3.25) we get the gain rates for the
distribution Eq. (3.22).

Figure 3.8 represents ||Gu for 8 = 10 (corresponding roughly to
L = 4 at the eguator} versus normalized frequency. The values of
and gq are kept constant (4 and 5 respectively) but different values of
vq are chosen to see the important effect of this newly introduced
parameter.

For the case v = 0, which is the particular case of separability,
the gain is very similar both qualitatively and quantitatively to that
produced by the functions « p—vsinqa. However it can be seen that the
gain decreases as vq increases. For a value vq = 0.5, the maximum

value of Gu(A) is already less than 1 db. Now a value Vv = 4 represents
I

and the gain is expected to be lower

an upper limit in value of l"Gu
for higher values of . 1In Figure 3.9 the function Eg. (3.22) has been
represented for a value vq = 0.5 1in terms of differential fluxes versus
energy and versus pitch angle with an appropriate normalization to cleosely
fit Schield and Frank's data [1970]. The experimental values of o were
close to 90° (the field of view of the electron analyzer was directed
earthward while the spacecraft was moving almost parallel to and near the
magnetic equatorial plane). The fit is better than a pure power law

(e p_v). In particular, the spectrum is softer for lower energies as
indicated by the data. This may be a manifestation of increasing energy
diffusion at low energies. Bogott and Mozer [1971] measured pitch-angle
distributions on ATS-5 satellite at synchronous altitude during quiet time.
The data show quite isotropic distributions in the measured energy range
(40 keV and above). Our proposed model of distribution also fits this

observation.
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of energy and pitch-angle coupling in the
aﬂplif1cat10n regime. 6E1 is the same parameter
as in Figure 3.7.
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There may be some irrelevance in comparing Bogott and Mozer's [1971]
measurements which were made outside the plasmapause with measurements made
inside the plasmapause. In favor of the compariscn, from Schield and
Frank [1970], high energy fluxes are fairly similar inside and outside
the plasmapause. Secondly, the Kennel and Petschek [1966] mechanism
predicts a small anisotropy for 40 keV electrons (AKP n»1/6, or q ~ 0.3).
This mechanism has recently been extended by Lyons et al [1972] to include
arbitrary angle of propagation and provides a satisfactory explanation to
both the "slot" between inner and outer Van Allen radiation belts and the
shape of pitch angle distributions of high energy particles (b, williams,

private communication].

E. NONPARALLEL PROPA&ATION

The purpose of this section is to compute the variation of the gain
with the wave normal angle. The general expression of the gain is much
more complex than for the parallel propagation case. For simplicity we
study first such simple separable distributions as p_vsinqa. Then we
study nonseparable distributions for small wave normal angle. In the
latter case it is then possible to make an expansion around 6§ = 0 of

the expression (2.69), limiting the mathematical complexity.

1. Separable Distribution

A Fortran program has been developed to compute the nonparallel
gain rates for separable distributions with integer values of v and
even integer values of gq. The details are given in Appendix A.

The gain rates have been computed for many combinations of the
parameters + and gq and [ varying from 0.1 to 0.9 and 6 from o

to a fraction of a degree from the resonance cone angle BR. The values

71 SEL 73-043



G (8)
of the ratio EEW are displayed on Figures 3.10 and 2.11 for a few
u

values of v and q. The gain decreases with values of 8 because of
increasing Landau damping. There is a distinction to be made here
whether the gain was negative (damping) or positive (growth) for parallel
propagétion at a piven value of A. As the absolute value of the gain
often decreases for increasing wave-normal angle, it may well be that
there is less attenuation, but there is never more amplification at
8 ¥ 0 than at 6 =0 for A < 0.5. This casts a doubt upon Brinca's
[1972] argument that the presence of minimal gain at @ = 0 plays an
important role in triggering emissions, at least with this kind of distri-
bution. In faet the cases discussed by Brinca [1972] are cases for
which there is only damping at £ = 0. For A > 0.5, maximum growth at
8 # 0 is possible but this effect is very small ((Gu(B)/Gu(O) always
stays ~ 1). The frequency j = 0.5 is a transition frequency for several
factors whose sense of variation with 8 is different for values of |}
above or below 0.5: N (8) and le(e)/co decrease with & when
A < 0.5. At the same time there are more Landau particles than fundamental
cyclotron particles for A < 0.5. Therefore, the first cyclotron resonance
part of the gain can only decrease (in absolute value) for 8 ¥ 0 (and
6 <8g) and A< O0.5.

We have included in the program harmonics up to order |m|< 3. The
conclusion is close to Brinca's [1972] conclusions: harmonics of order
m ¥ 0,1 (Landau and fundamental cyclotron interaction) are almost always

negligible. For p - 1, and if the spectrum is hard encugh so

Pro = Pre

that the number of particles at Landau and second harmonics are not too

different, the strength of the normal second harmonics interaction and the

Landau interaction can be comparable. For A -0, p = Pp. and the

R-m
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harmonic m = -1 c¢an be non-negligible compared to the harmonic m = 1.
It is seen from Figure 3.10 and Figure 3.11 that there is a range of
values 8§ < BS(Gu(eS) = 0) for which the distribution was unstéable. es
is decreasing with increasing value of v, as was already shown by Kennel
[1966]. Therefore Kennel's conclusions concerning an unstable case of
angle < es are valid, though his approximation for Landau interaction is
incorrect (see Section 2D). For A < 0.5, there are more Landau than
cyclotron pafticles and the number of particles being weighted by the
stegpness of the energy spectrum, the ratio of available Landau particles
to available cyclotron particles is increasing with . This ratio is
increasing when A decreases. It is expected that Ss is correspondingly
decreasing. However, the relative number of particles available at
resonance is weighted by the factor @m. As pointed ocut in Section 2D,
@0 decreases when A decreases. This has an cpposite effect to the
increasing number of Landau particles when /A decreases. For the "classical”
part of the Landau interaction, this just expresses the fact that the
parallel component of the electric field decreases relatively to the
perpendicular component when |/, decreases {see Figure 2.5). For a given
value of v, BS is increasing-with d. The increasing of anisotropy
affects differently cyeclotron and Landau interaction. 1In Eq. (2.70), the
derivative 3“_?9—" is weighted by a bigger factor (~sin%1 + l y for
(sing) A
fundamental cyclotron interaction than for Landau interaction (—sin2a).

Close to the resonance cone, there is a rapid change of topology in

the refractive index around the Gendrin angle eG (see Figure 2.4) which
is reflected in the gain of Figures 3.10 and 3.11 where vertical arrows

show the location of the Gendrin angle. The gain in absclute value even-

tually becomes much bigger than for parallel propagation as § = eR
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because Ppm 0 and there is an increasing number of particles at
resonance. With the values of v and q c¢hosen on Figures 3.10 and

3,11, there is only damping as § = BR.

For pA << 1, pR(—m) - pRm’ and if go is anisotropic,
U Mo~ %o (3.26)
m p A O(sing) )

Furthermore from Eq. (2.74), @_m - @m when 8 - BR’ Therefore the
cyclotron harmonics tend to cancel each other.

In the general case, using Egq. (2.74) for & = eR and the functions

Bﬁz(d) defined in Appendix A, we find that as = @.:
4 mm mq _mm
k, =« (q+v) B - — B (3.27
< ig ﬁ ]pRm| l TV 52,47 B v+2,q—2] )
where the functions BEE are evaluated at dm = I(A—m)taneRI and the

coefficient of proportionality is positive. For high values of A, we

make & rough analysis treating d_. = AtanBR and d_. = (1-A)taneR as

0 1

small quantities and assuming that we can neglect harmonics of order % 0,1.

Growth will occur at the resonance cone if

2
d0

2
~(q+w) | B -5 B
v w2,q 2

oY
Bvq-(q+V)Bv,q+2] T (T:K) > 0 (3.38)

>[4

v,q+2] *

(and damping in the opposite case).

The coefficients Bvq are given in Eq. (3.11) which shows that:

2 -2
B O Y - B .Yz (3.29)
WidE2 T ddy v v2,q Vi Gy

and Eq. (3.29) is rewritten as;

2 2
d 1

d Y
(a+2) 52 -(v=-2) +[ % - (g+2)

A
i (T:K) >0
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4 1-p Y 2
or = (T) [\)-Z-do]
dl

a > (3.30)

1-p.Y
(A)

For parallel propagation, the corresponding inequality was
q > 2/(% -1) {see Eq;'(3.9)). For example for =5 and A = 0.6,
Eq. (3.30) requires q > ~ 6 for growth at the resonance cone whereas
only g > 3 was hecessary for growth at parallel propagation.

This rough analysis indicates that distributions need to be signifi-
cantly more anisotropic to yield growth for propagation close to the
resonance cone than for parallel propagation.

2. Nonseparable Distribution

By expanding Eq. (2.71) around & = 0, the variations of the

gain for small angle can be found:

oo _2
2 cosqg | D P
kig ™~ er 5 ]Pz f ;82 [T%K'LEEQ ) %Ei” NA] i Yo
cos 8 N 0 L 0
2
2 2 P
2 A1 _ E_ 2 2 s
+ [1 + 8 (T:" 2)] U1 T ¥ A (po) 01
P
nI"R1 o2 1 ]BU
e L L = 3,
O NAejZ } 2
*\—g /) U j PR, (3.31)

where “U = U(”p

: U
- ,pl), and the quantity 5;; is to be evaluated at

Rm

Inserting Egq. (3.22) into Eq. (3.31), we find the variation of

the gain for a nonseparable distribution and small angle. (Numerical
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computations are made with a program developed in Appendix A.) This time
the 8§ range of instability is fairly small. The type of nonseparable
distribution we have chosen gives only damping for the m = 0 resonance
whereas it gives an almost marginally stable cyclotron gain over a wide
range of frequencies. The cyclotron gain does not change much with 8
small {(its stays practically marginally stable for small &) and therefore
the Landau interaction overtakes the cyclotron interaction very rapidly
when & incresses. This effect is more proncunced when the coefficient
of coupling \h increaées as shown on Figure 3.12 where a value of

vy = 0-25 still gives growth at 8 = 10° whereas for vy = 0:50 there

0
is already damping at 8 = 10 .

F. CONCLUSION

A new model of distribution function has been proposed. The new
characteristic of the distribution is that it is nonseparable in particle
energy and pitch angle, or in other terms, particles with different
energies have different pitch-angle distributions. It has a very important
effect on wave amplitude gains caused by wave-particle interaction, namely,
this distribution produces a gain which is almost stable for a wide range
of frequencies in contrast to previous separable distributions such as
Liemohn's {[1967] which yield large positivegains (amplification) for low
frequencies and large negative gains (attenuation) for high frequencies.
This offers an explanation for the accessibility/instability controversy
about the high-frequency cutoff of nose whistlers presented in Chapter 1.
As of now, electron energy spectrums have been measured over the range
(100 eV ~ 40 keV) ip which the bulk of interactions takes place between
whistlers and electrons in the magnetosphere (see Schield and Frank's

[1970] data). On the other hand, pitch angle information is not yet
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FIGURE 3.12. GAIN FCR A NONSEPARABLE DISTRIBUTION AND DIFFERENT
DIRECTIONS OF PROPAGATION.
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available in this energy range. Therefore immediate confirmation of our
model is not possible. We feel it is reasonable though, because, 1) it
predicts an increase in the slope of the energy spectrum in the low particle
energy range, in agreement with Schield and Frank's [1970] data; 2) it
predicts almost isotropic fluxes in the high particle energy range, in
agreement with Bogott and Mozer's [1971] measurements and Kennel and
Petschek's [1966] predictions.

A detailed study of the influence of the angle § between wave vector
and static magnetic field upon the gain rates has been presented. For
separable distributions, the study has been made for the complete range
0< B < BR. We have emphasized the importance of the weighting factor
of the Landau interaction which weights the number of Landau particles.
This factor and the number of resonant Landau particles vary in opposite
phase with frequency. We have shown that significantly more anisotropic
distributions are required for growth at the resonance cone than for
parallel propgation. For nonseparable distributions, the gsain is evaluated
for small values of @&. It is found that the cyclotron part of the gain
stays small and is rapidly overtaken by Landau damping when 8 increases.
Qur new model of distribution may be over simplified in the sense that it
was derived by looking for a wave-plasma equilibrium over a large frequency
band but only considering cyclotron interaction. A suggestion for a dis-
tribution model giving equilibrium also in the presence of the Landau
interaction will be given in the next chapter.

This chapter was concerned with the evaluation of gain over a narrow
region in space considered as homogeneous. To compare with actual data
the gain must be intggrated over a ray path. It is the object of the
next chapter.
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IV. INTEGRATED GAIN RATES AND COMPARISCN WITH DATA

A, INTRODUCTION

The variation of the wave amplitude gain per 1000 km has been
studied in the previous chapter. The influence of the numerous parameters
of concern have been investigated in detail. To compare with actual data,
it remains to integrate the gain over a complete whistler wave ray path.
To carry out the numerical computations we use the ray tracing program
developed by Walter [1969] and refined by Angerami [1970]. Certain
parameter values of the ray tracing program are used as input numbers to
our computer program. This procedure is explained in more detail in
Appendix A.

In Section B we use our program, including arbitrary angle of propa-
gation 8 for separable distributions and small values of & for non-
separable distributions, to test the validity of the parallel propagétion
approximation (which assumes 8 = 0) for ducted whistlers.

The observations of Angerami [1970] were very important in determining
the nature of nose-whistler upper cutoffs. Taking the same values of ray
tracing parameters as Angerami, we are able to test the validity of our
model of distribution against models of separable distributions. This
investigation is carried out in Section C.

Recently, Dunckel and Helliwell [1973] observed signals with very
high normalized frequency (above A = 0.9) and explained by ray tracing
the accessibility characteristics of these signals. We investigate the
instability characteristics of these signals in Section D.

The magnetospherically reflected (MR) whistlers were first observed
and explained in terms of accessibility by Smith and Angerami [19681].
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Edgar [1972) made an extensive study of this type of whistler. Using
the results of some ray tracings of Edgar [1972), we study the instability
characteristics of MR whistlers in Section E and compare our calculations
to similar computations made by Thorne [1968].

In Section ¥, we summarize the most important contributions of the
chapter, and discuss their implications. In particular we note the
relevance of our results to plasma injection experiments, and to plasma

diagnostic technigues.

B. DUCTED WHISTLERS

The gain has been integrated along a realistic model of a whistler
duct for a few distributions. The duct is described mathematically by
the following expression [Angerami, 1970]:

2
—(L—Lo)

2-AL2

n(L) = n_+{1 + C exp (4.1)

0
where n, is the background density, ¢ is the relative enhancement
{depletion) of density at the center of the duct (LO) and AL represents
the duct semi-thickness.

We have chosen the following values:

C=20.2
L0 =4
AL = 0.02

nofk:O) = 340 t'_'m_3

n0(1000 km) = 3130 em™S (T = 1000 °x, 80% 0% and 20% W'
at 1000 km altitude).

The results are presented in Table 4.1 for a few separable distri-

butions and a nonseparable one, where we give both exact and approximate

SEL 73-043 82



TABLE 4.1. GAIN FOR A DUCTED WHISTLER. GT and GP are
respectively the total and parallel approximation
gains (in decibels), integrated between conjugate
peints at 1000 km altitude along ray paths in a
duct centered at L = 4 (see text for the other
duct parameters). The rays were started at vertical
incidence at 1000 km altitude and at center of the
duct, with the exception of the 6.65 kHz ray. Ap
is the normalized frequency at the equator. Three
separable distributions are chosen and one non-
separable distribution whose parameter values are
determined in Section 4C.

Vo= 5 5 5 5
T{kHz) Mg - 0 2 4 4.8
= 0.4
vq
1.36 0.1 GT = | -2.08 +10.3 +13.5 +0.56
GP = -2.08 +10.4 +13.6 +0.62
2.72 0.2 GT = -8.94 +17.1 +24.4 +1.32
GP = -8.82 +17.2 +24.6 +1.48
4.08 0.3 GT = -24.2 +22.2 +36.6 +2.52
GP = ~24.0 +22.4 .+36.8 +2.76
5.44 0.4 GT = -54.6 +22.8 +47.4 +3.92
GP = -54.4 +23.0 +47 .8 +4.38
6.65 0.483] GT = -115.4 +14.5 +57.0 +2.48
GP = -114.8 +16.4 +60.0 +6.62

gain values. Our results confirm the validity of the parallel approxi-

mation used by Liemohn [1967] in the case of ducted whistlers. In almost
all cases the difference between the full treatment and the parallel
One reason

approximation is negligible. There are two reasons for that.

*js that the angle € stays small when a wave propagates in a duct. The
second is that we deal with low frequencies (f < 0.5) and though there are
more Landau particles than cyclotron particles, the parallel component
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of the E field stays very small. The only big discrepancy is for the
nonseparable distribution and the frequency f = 6.65 kHz, to which
corresponds a normalized frequency A = 0.483. This frequency is very
close to the limit frequency of duct trapping. The cheoice of input
paramefers is very critical in order to trap this wave and many attempts
had to be made to find the correct values necessary for trapping, in
contrast to lower frequencies for which a choice of vertical incidence

at 1000 km at the middle of the duct was sufficient for trapping. It
turned out that the variations of 8 for f = 6.65 kHz were sighificantly
higher than for lower frequencies.

As expected from the results of Chapter 3, the gain is considerably
lower for the nonseparable distributions (only a few db) than for the
separable distributions. Therefore, unless pitch angle infermation is
available, it is impossible to conclude that nose—-whistler upper cutoffs
are caused by hot plasma effects. Therefore the use of nose whistlers as
a diagnostic tool for monitoring electrons may he limited. Our nonseparable
distribution is constructed to imply a certain equilibrium between waves
and plasma (neglecting sources and sinks) and in quiet times, nose
whistlers may tell us only that indeed this situation is reached. In
quiet times, it may be possible to correlate a noted change in electron
distribution with & noted change in nose whistler amplitude characteristics,
especially if there is a tendency towards iscotropy. The observation on
satellites of much higher cutoffs is very important because: 1) it is
evidence of the accessibility explanation of nose whistler upper cutoff
observed on the ground; 2) it sets up some limits on the values of the
parameters of the hot plasma distribution. An investigation of this high
cutoff case is given in the next section.
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C. DUCT LEAKAGES

The observations of Angerami [1970) provide an almost unique source
of information for correlating the whistler amplitude spectrum with the
distribution of energetic electrons within the plasmapause since his data
and Schield and Frank's [1970] data are from exactly the same period. In
particular the spectra of Figure 3.4 were measured on June 23, 1966.
During the period between June 15 and June 23, the magnetic activity was
quiet; K_dindex ~ 1,2; the DST index was low and the plasmapause was
located beyond L ~ 5.5. It may he therefore reasonable to assume there
was no major change in the distribution function during that period.

Briefly, the data recorded on OGO 3 on June 15, 1866, between L = 4.1
and 4.7, showed whistler frequencies far above the cutoff frequencies
ohserved on ground data. Sometimes these high frequencies were still
ducted when they reached the satellite (see Figure 4.1la). More often,
they were already unducted (Figure 4.1b). Careful ray tracing explained

the propagation of these waves (see Figures 4.2 and 4.3). For further

details, the reader is referred to Angerami [1970]. The suggestions of
Liemohn {1967] that the hiéh frequency whistler cutoff on ground data at

a normalized frequency of ~ 0.5 is caused by hot plasma effects is there~
fore gquestionable, particularly because without ducting we expect increased
damping with the class of distribution functions previously considered.

To look at that gquestion in detail, we chose the ray tracing
parameters that Angerami used to explain the duct leakages. We integrated
the gain rates on these ray paths and present the results in Table 4.2
(see Table 4.2 caption for all details). None of the distributions are
compatible with the data; either there will be too much damping or there

will be too much amplitude difference between two different frequency
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FIGURE 4.1. TIME FREQUENCY SPECTROGRAMS OF WHISTLERS RECEIVED ON OGO 3. Detailed
explanation of the records is found in Angerami [1970]. (a) shows a
whistler propagating in a duct up to 3/4 of the local gyrofrequency
(see Figure 4.2). (b) high-frequency leakages from whistler ducts
(see Angerami [1970] and Figure 4.3).
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FIGURE 4.2. RAY TRACING TO EXPLAIN WHISTLER UPPER CUTOFF
FREQUENCY OF FIGURE 4.la. The values of the
ray tracing parameters at different points
along the path are the following:

A: L =4,7407 ) = 19.48 8 = 6.00 A = 0.500 WR0 = 404 le = 404
B: 4.7467 15.42 5.21 0.601 281 124
8: 4.7406 9.32 -7 .45 0.731 158 21.5
C: 4.7102 7.43 -15 .60 0.748 132 15.8
D: 4.4696 2.20 -41.33 0.3884 78.5 16.7

L and p are the geomagnetic dipole coordinates. The angle 8
(in degrees) is measured clockwise from the local magnetic field.
A is the wave frequency normalized to the local magnetic field.
W and W 1 (in eV) are the minimum energies of rescnance of
Landau and ?undamental cyclotron resonances respectively.
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FIGURE 4.3. RAY TRACING TO EXPLAIN UPPER CUTOFF FREQUENCY
OF LEAKAGE FROM DUCT 2, AS OBSERVED ON FIGURE
4,1b (L2 component) .
A: L =4.6110 3 = 24.66 8 = 3.50 p = 0.492 Woo = 712 W
. 4.6011 16.36 -8 .54 0.751 2486
: 4.3428 10.98 -33.83 0.766 104
: 4.0747 6.45 -43.19 0.703 57.8

SEL 73-043

88

R1

= 759
26.9

9.7
10.3



TABLE 4.2.

GAIN FOR SEPARAELE DISTRIBUTIONS. The gain is

expressed in decibels. Cases I and 11 refer

respectively to Figures 4.1a,b. The frequencies

shown are the following: Case I: f = 6.1 kHz

is the highest observed frequency, and f = 4.17

kHz is the fregquency which value normalized to the

local magnetic field is 0.5 at the satellite location;

Case 1I: f = 8.7 kHz and f = 7.7 kHz are respectively

the highest and lowest observed frequency. The values

of the parameters used in ray tracing of 6.1, 8.7 and

7.7 kHz components are taken frem Angerami [1970].

The variables + and ¢ are the energy and pitch angle

parameters. The functions GT and GL are respectively

the total and the Landau gains expressed in db, inte-

grated between A and S (see Figures 4.2 and 4.3).

For the unducted paths the values of the parallel

approximation gain GP is also gilven. The normalization

of the distribution function for the computations is

6E1 4x10'3, to which corresponds n(Ww > 100 eV) ~ lcm
is chosen lower than the lowest resonance energy

agong the paths.

Case (f(kHz)| v= 4 4 4 4 6 6 6
] 2 4 6 0 2 4
6.1 -3 24 -117 -3.23 | +50.3 -1429 -341 -45.5
Gl= |-3.2 -1.5 ~2.34 | ~1.0 -4.2 -1.25 -0.7
I
4.17 -117 +15.4 | +65.2 | +86.6 ~58.6 2.7 +21.1
GL= | -0.75| -0.37 | -0.5 -0.6 -1.2 -1.8 -1.2
8.7 GT= | 1830 | -754 ~296 -87 .4 -18000 -5170 -1450
GL= | =525 -296 -188 -127 -2110 -851 =432
GP= { -2210| -891 -287 +40.6 -11000 -3070 ~-814
11
7.7 -871 =300 -70.8 | +32.8 -3180 -800 ~-141
-316 -172 -1086 -63.6 -821 -328 -160
GP= | -1100| -348 -817 +171 -2260 -497 -19.5

components. (On the average, a difference of 20 db between two frequencies

would be readily observable on the records.)

Therefore we rule out separable distributions such as Liemohn's [19671

89 SEL 73-043



as a possibility. It should be pointed out that for the unducted paths,
computations with the precise values of & had to be done, in contrast to
ducted propagation for which the parallel propagation approximation is
valid. We have written & program which includes 7 harmonics (see Appendix
AY, however a reasonable approximation could be made by keeping only the

m =0 (Landau) and m = 1 (fundamental cyclotron) harmonics and neglecting
all other cyeclotron harmonics.

We have repeated the duct leakage calculaticns using a nonseparable
distribution of the class developed in the last chapter, and present the
results in Table 4.3. From the ducted péth of Figure 4.2, we have
determined, for two fixed values of + and vq, what value of the
anisotropy parameter q which would yield small gain between points A
and S and small differences in gains between any two frequencies. (As
an example, we have chosen 6.1 kHz and 4.1 kHz which correspond respectively
to the highest frequency observed in Figure 4.la and the frequency to which
corresponds A = 0.5 at the satellite.) A value of g between 4.8 and
5.0 secems adequate. Note though the high sensitivity on the value of q.
(There is a big difference in gain values with as little a change as gq
varying from 4.5 to 5.) The reason for the choice of parameter values is
the following: v is chosen to match the measured energy spectrum and we
have seen (Chapter 3) that y ~ 5 1is a reasonable value. The parameter
q is chosen so that the highest observed frequency is not damped. From
Section 4B, the parallel propagation approximation can be considered as
approximately correct. From Figure 3.8, we see that the highest unstable
frequency is less than the marginal stability frequency Ast of the distri-
bution having the same values of v and ¢ but a value of vq = 0. In

the case of y =4 and vq = 0, can be obtained analytically:

Ast
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TABLE 4.3. GAIN FOR NONSEPARAELE DISTRIBUTIONS. A table
similar to 4.2 but for nonseparable distributions.
v is the coefficient of coupling between energy
add pitch angle. GC is the fundamental cyclotron

part of the gain. &, = 4x10™3, and W, = 20 ev.

Case f{kHz) = 5 5 5
q= - a9
= 0.4 0.4
vq
6.1 GT= -18.9 -1.87 +8.0
Gli= ~1.97 -1.80 -1.7
I
4.17 GT= +4.1 +4.5 +4.8
GL= -0.34 -0.31 -0.29
B.7 GC= +12.3 +116 +181
II
7.7 GC= +71.9 +96.6 +123
1—e_q/b
het =1 =975 (4.2)
For high values of q/b:
A ~1~1b/q (4.3)

st

We therefore expect a value

b
S

— 4.
= (4.4)

q >

where Au = 0.73 corresponds to the highest freguency observed on
Figure 4.la, and bS is the ratio BS/BE at the satellite position.
Close to the edquator:

b~1l+ % kz(rd) . (4.5)

At the satellite, lg ~ 9®  and b, ~ 1.11, and we deduce from Eq. (4.4)
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that gq > 4.1.

The quantity vq is chosen so that there is small difference in
gain between different frequencies. From Figure 3.8, such a difference
diminishes when‘ vq increases, and we can set up a lower bound on vq’
which depends only weakly upon (.

As it can be seen by looking at the values of kig from point to
point along the ducted ray path, the instability characteristic of a
nonseparable distribution is more complex than for a separable function.
For a fixed wave frequency, a nonseparable distribution function can be
unstable at equator and be stable off equator, along the same field line,
in contrast to a separable distribution. Physically, this comes about
due to the fact that the resonant energy is increasing going from equator
poleward and for a nonseparable distribution, the anisotropy of the
function at resohance is decreasing towards isotropy and correspondingly
the distribution becomes less unstable.

For the unducted path of Figure 4.3, only the fundamental cyclotron
part of the gain could be determined because we developed a program only
for small values of parameter dm = I(A—m)tane[ {see Appendix A). DNote
the high sensitivity of parameter gq on the cyclotron contribution. As
pointed out earlier, the instability behavior of a nonseparable distri-
bution may he complex. Also, for the distributions we chose, there is
both damping and growth along the path. Finally, because of unducting,
the relative range of resonant energy is large and galn rates change
markedly towards the resonance cone.

The Landau contribution for the unducted path can be estimated to
be of the same order for the class of separable and nonseparable distri-

butions we have chosen. Both derivative terms with respect to energy
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and pitch angle add up to contribute Landau damping (see Eg. (2.70)}), in
contrast to cyclotron interaction where they gompete with each other.

The essential difference between separable and nonseparable distributions
wag precisely that these derivative terms almost cancel each other for a
large frequency band in the case of nonseparable distributions and do
not in the other case. Therefore we expect from Tables 4.2 and 4.3 that
the Landau interaction will dominate for our model. The nonseparable
model we proposed is certainly not adequate for the unducted path for
several reasons:

1. We looked at wave-plasma equilibrium only with respect to
cyclotron interaction. In the unducted case, a distribution at equilibrium
with both Landau and eyclotron interactions should be looked for (this
becomes especially important close to the resonance cone where the Landau

interaction eventually dominates), for separable and nonseparable distri-
butions.

2. There is complete lack of information about particle distributions
in the energy range below 100 eV and the whistler of Figure 4.1b inter-
acts with electrons well below this energy. If used below 100 eV our
model eventually violates the condition & << 1, which is necessary for

- . EH
the validity of the gain expressions.

We may suggest a type of distribution which is at equilibrium with
respect to Landau interaction. Looking back at Figure 2.4, we see that

N is fairly constant over a wide range of frequencies and angles §

H
{(but a few degrees from eR) and so is the minimum energy of resonance
of Landau interaction from Eq. (2.12).

A peak in the distribution function or at least a flattening in the
vicinity of the average Landau energy of resonance would reduce Landau
damping. To a minimum Landau resonance energy WRO = 150 eV, there

corresponds an average energy of interaction

2
< W > = WR0[1 + < tan' g >1 . (4.6)
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For v = 5, vq = 0.4 and q =5, <W> =750 eV. We see indeed such
a flattening around 750 eV on experimental spectra (see Figures 3.4a,b).
The flattening of the spectrum being repeatable in two events separable
by 20 days, it seems more than fortuitous and may well be related to
Landau interaction.

Several important results have been established in this section:

1. Separable distributions such as Liemohn's [1967] cannot account
for Angerami's [1970] observations.

2. The class of nonseparable distributions we proposed in Chapter
3 is compatible with the high frequency cutoff at Au ~ 0.75 of Figure
4.1a. In turn the value of this cutoff determines a lower bound for one
parameter (q). A lower bound on the coupling parameter =+ is determined
by the condition that the difference in gain should he smal& for different
frequencies.

3. Our model is probably not adequate for very low energy electrons
(a few tens of eV) because if it is accurate the unducted whistler
components of Figure 4.1b should have been absorbed. This suggests that
the observed flattening of the distribution in the 500 eV range reduces
Landau damping.

The nonseparable distribution we propose incorporates the idea of
equilibrium between plasma and waves in the magnetosphere. This equilib-
rium was investigated by Kemnel and Petscheck [1966] and Lyons et al
[1972] for high energy particles. We suggest here that waves may control
efficiently the distribution of low energy electrons as well. Of course
the picture of the mechanism should be completed by taking into account
also sources and sinks of particles.

Considerable attention has been focused recently on plasma injection
experiments ([Brice, 1970; Cornwall, 1972]. By injecting cold plasma in
the magnetosphere the resonance energy decresses and it is expected that

wave-particle interactions become stronger as more particles will be

available at resonance. The fact that, in certain {(quiet) times, the
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hot particle distribution is quite stable to electromagnetic waves casts
8 doubt on the efficiency of such an experiment.

We have also demonstrated here that our method to study wave ampli-
tude variations caused by wave-particle interaction provides valuable
information concerning distribution functions. Provided we know the
flux of barticles (which fixes the number of hot particles and one
parameter, namely, the energy parameter v), our method determines very
sensitively the anisotropy of the distribution function. As of mow, the
number of available data is scarce, but a controlled experiment looks
very promising with the advent of ground based v1lf transmitters such as
the transmitter of the Stanford VLF group, located at Siple, Antarctica
(75.5508, 83.55ow). Waves of freguency comparable to the minimum electron
gyrofrequency of the Siple field line should be transmitted. The observa-
tion of the amplitude characteristics of these waves onboard a gatellite
orbiting clese to the equatorial plane would provide particle distribution
information along the way described in this section.

D. WHISTLERS OBSERVED AT FREQUENCIES NEAR THE LOCAL ELECTRON

GYROFREQUENCY

Dunckel and Helliwell [19731 observed signals at frequencies close
to the local electron gyrofrequency, e.g., 8s close as A ~ 0.9 onbhoard
0GO-1 satellite. They successfully interpreted with ray tracing how the
wave could propagate. Since A is high, these signals must interact
with very low energy electirons. The cyclotron resonance energy tends
toward zero when A = 1 and secondly for A > 0.5, the wave becones
eventually unducted and propagates close to the resonance cone. This

lowers the energy of resonance again.
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Choosing the same values of ray tracing parameters they used, we

investigated whether the distribution used in the preceding section is

compatible with these observations or if we should have a different model.

The caption of Figure 4.4 explains the data and shows the value of

parameters and Table 4.4 shows the corresponding values of integrated

gain from 1000 km altitude up to satellite location.

TABLE 4.4, GAIN BETWEEN 1000 KM ALTITUDE AND SATELLITE.
The gain is expressed in decibels. f = BO kHz:
The ray starts at 55° latitude, vertical incidence.
In the ray tracing, the plasmapause is located at
L = 3.9 (see Dunckel and Helliwell [19731). The
parameters of the ray tracing are:
L y (©) 8¢ | 4 Yro(kev) | "R1(ev)
8: | 3.6766 36.67 -13 .66 0.883 4.46 78.1
B: | 3.2894 32.27 ~18.42 0.916 1.65 13.7
-3 -3
éEl = 4%10 and n{w > 100 eV) ~ 1 cm ; WH = 20 eV,
PATH = 5 5] 5 5 5
q= 4.5 4.8 5 0 2
Vo= 0.4 0.4 0.4
q
AS GT= ~7.61 -6.12 -5.28 -128 -11.3 -1.17
GL= -0.43 -0.36 -0.32 -1.34 -0.13 -0.015
GP= -6.27 ~-5.02 -4.33 -124 -10.9 -1.14
AB GT= -72.6 ~-59.4 -51.9 ~1100 ~140 -21.6
GL= -4.52 -3.93 -3.52 -14.3 -1.95 -0.32
GP= -44 ,4 -36.0 -31.3 =916 -126 -17.7
It is seen in Table 4.4 that the gain with a nonseparable distribu-
tion or a separable distribution with an anisotropy of q = 2 would

SEL 73-043

96
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55°

FIGURE 4.4. RAY TRACING AT 80 KHZ TO SIMULATE OBSERVATION OF LF
SIGNAL ON OGO 1. Ray commences at 1000 km altitude,
vertical incidence, and 55 magnetic latitude.

S§: L = 3.6766 } = 36.670 e = —13.660 A = 0.883 WRO = 4.46 keV WRl = 77.5 eV

B: 3.2894 32.27 -18.42 0.9186 1.62 13.5
Point B corresponds to the highest normalized frequency

along the path. For further details see Dunckel and
Helliwell [1973].
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yield small attenuation at the satellite location. The reason is because
the satellite is far from the equator (XS k5370) and there are few rescnant
particles available at the satellite location because of two reasons: 1)
Many particles have mirrored before the satellite location; and 2) the
refractive index decreases with latitude which causes increasing energy

of resonance and hence fewer particles at resonance.

It is interesting though to notice that if the satellite had crossed
the ray path a few degrees lower in latitude at 3} n,320, to which
corresponds the highest value of A( ~ 0.92) along the path, the damping
would have been important for the nonseparable distribution. Such a
satellite path would have been most interesting to test the validity of
our model.

For all distributions the Landau interaction is negligible, and
the wave is interacting mostly with very low energy electrons in some
portions of the path.

This L¥F wave, though of much higher frequency than the waves con-
sidered in the last section, has some identical characteristics. Namely,
the wave propagates in the ducted mode up to 2 high normalized frequency
and then rotates inward and propagates in the unducted mode. Both
because the normalized frequency is high on the unducted parf and bécause
on the unducted part they eventually propagate very close to the resonance
cone, these waves interact with very low energy electrons (i.e., less than
100 eV). Because there is a complete lack of data in that energy range
and because satellite measurements become more difficult at low energy
(spacecraft potential effect, ete.), whistlers may very well prove to be
a unique tool for measuring very low energy particles. An experiment

similar to the experiment described in the last section may be envisioned
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for that purpose.

E. MR WﬁISTLERS

Magnetospherically reflected (MR) whistlers were observed for the
first fime by Smith and Angerami [19681 and studied rather extensively
by Edgar [1972). An example of an MR whistler spectrogram is given in
Figure 4.5. The explanation of such whistlers in terms of accessibility
(see above references and Figure 4.6) is the following: These waves are
generated at low L values and their frequency, normalized to the
equatorial gyrofrequency of the field line of generation, is small and
stays below the LHR during an important portion of their path. 1In the
absence of ducts, the wave propagates with a large wave normal angle
which generally increases with distance. Since the wave frequency is below
the LHR, the refractive index surface is closed (see Chapter 2), there is
no limit for the wave propagation angle and reflections can occur.
According to the input latitude, the satellite can record different
components which have been reflected a different number of times, labelled
as MR O+, 1-, 14, etc., as sketchéd in Figure 4.6.

Edgar [1972] explained the characteristics of the spectrogram of
Figure 4.5 (and similar other spectrograms) through arguments invoking
accessibility. We see several important features of MR whistlers in this
spectrogram, namely, both upper and lower frequency cutoffs, and emission-
like structures at the upper cutoffs. This last feature suggests that
wave~particle interactions may play a role in MR whistlers and may account
for both upper and lower frequency cutoffs.

Thorne [1968] postulated that all but the Landau interaction can be

neglected both because J << 1 and @ is large along the major portion
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FIGURE 4.5. FREQUENCY-TIME SPECTROGRAM OF A TYPICAL MR
WHISTLER OBSERVED NEAR THE MAGNETIC EQUATOR.
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FIGURE 4.6. SKETCHES OF RAY TRACINGS TO EXPLAIN THE FIRST
THREE COMPONENTS OF WHISTLER SHOWN IN FIGURE
4.5. The ray tracing parameters are given in

Table 4.5.
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of the path, and computed total amplitude gain over a few typical MR ray

paths. He first used isotropic distribution « 1 . He concluded that
such distributions give too much damping and he :esorted to distribution
with a secondary peak around 10 keV. The peak causes Landau growth along
part of the path, therefore reducing the damping.

Edgar explained the upper frequency cutoff as well as "emissions'
structures at the high frequencies purely on accessibility grounds. The
high frequency distortions are caused by the presence of ducts, and density
irregularities can account for the upper cutoffs. Edgar [1972] could not
explain the low frequency cutoff but we can suggest a very simple explana-
tion [R. A. Helliwell, private communication]: namely, the earth-ionosphere
waveguide acts as a high frequency filter with cutoff frequency at .~ 1.5
kHz during nighttime [Helliwell, 1965]1. (Note that the spectrogram of
Figure 4.5 was recorded in the early morning.)

Therefore it seems of interest to re-examine Thorne's [1968]
computations.

We integrated the wave amplitude gains for separable distributions
along ray paths whose parameters are defined in Edgar [1972] (see Table
4.5). We had to resort to separable distributions because of large values
of & and we have developed a program for arbitrary © only for separable
distributions. The choice though is not unreasonable. For cyclotron
harmonics, the energy of resonance is very high and we have seen (Chapter
3) that for high energy, the assumption of separability is reasonable.

The Landau interaction is much less sensitive to nonseparability than

the cyclotron interaction.

We present in Figure 4.7 the results of ocur computations for the first
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TABLE 4.5. RAY TRACING PARAMETERS TO EXPLAIN THE MR WHISTLER
OF FIGURE 4.5. The parameters were chosen after
Edgar [1972]. The rays begin at 500 km altitude,
vertical incidence, and latitudes between 20° and 10°
to intercept the satellite located at L ~ 2.4,
Y ~f5208. The diffusive equilibrium model is used
with 50% H+, 50% 0t at 1000 km, T = 1600 Ok, and
n(1000 km) = 1.15%10°, with an irregularity of the
form n(r,L) = nDE(r)-nc(L). nDE is thezDE model

LG i) il

1.6 .
sign of 8 is defined as positive measured clock-
wise from B_.

expression and n, = 1 - 0.9 exp

=0
f (kHz) MR A g {0 W (keV) W (keV)
RO R1
1.5 1- 0.023 -70.1 0.314 556
1+ -102.3 0.448 821
3- -84.1 1.01 1710
3 1- 0.046 -69.5 0.519 217
1+ -101.9 0.827 328
3- -83.5 1.60 750
5 1- 0.076 -68.7 0.752 118
1+ -102.3 1.36 209
3- -83.7 1.48 233
7 i- 0.105 -67.5 1.11 80.1
1+ -101.3 1.63 122
10 1- 0.150 -66.6 1.40 45,0

three MR components . In this case, the parameters influence in a complex
way the values of the gain and no simple discussion of the influence of
each parameter individually is possible. We see already from Table 4.5
that the ray path is fairly complicated. The ray path though is similar
for different frequencies but the same MR component. The wave propagation
angle is moving towards 00° as the numhber of the component is increasing.
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of energy (y) and pitch angle (q) parameters have been chosen.
n(W > 0) in the equatorial plane.

Several combinations
Bgq= N(W > 100 eV)/



Yhen B 1is close to the Gendrin angle eG and « is fairly close to the
1HR, a few degrees difference in 8 may yield a big difference in resonance
energy as illustrated by the difference in resonance energies for the 1+ and
3- components of the 3 kHz frequency. It is importsnt to compare the value
of © at the satellite (which is close to the equatcr where the interaction
is most importént) with eG' When 8 increases (as it qOes for increasing
component number), two opposite situations develop depending upon whether

8 is below or above 8, Referring to Figure 2.4, when « is slightly
above the LHR, NII decreases significantly when & increases while below

8

and increases very rapidly when @& increases while above eG. Corre-

o
spondingly, as the minimum energy of Landau resonance is inversely propor-
tional to N”, the strength of the interaction decreases (increases) when

8 is below (above) eG. This may be in favor of Landau damping for higher
frequéncy and higher component number, assuming the ray path behavior is

the same for different frequencies and the same component number. For
instance, denoting by GS the value of & at the satellite location,

eS n,eG for f = 5 kHz and the 3- component, and therefore BS would be
beyond BG for f = 7 kHz and the 3- component.

The Landau interaction is almost always dominating, though neglecting
the cyclotron interaction, as Thorne [1968] did, is invalid in some cases.
For example, for the case v = 4, g = 2 and the first MR component, cyclo-
tron growth overtakes Landau damping for all frequencies. Apart from this
case, the Landau damping dominates, but it would still be incorrect to
neglect the cyclotron interaction, at least for ) = 4. As pointed out in
Section 3E, though the cyclotron resonance energies are much higher than the

Landau resonance energy for A << 1, the parallel component of the electric

field, which excites the Landau resonance, is small. For increasing v, the
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Landau interaction becomes more important relative to the cyclotron inter-

action. For v =5, the ratio of cyclotron gain to Landau gain is of the

order of 10 to 20% and becomes negligible for v = 6 (of the order of 1 to 2%).
The question arises of what is the importance of the gain around the

turnaround point. In this case the approximation Eq. (2.71) is no longer

valid because the ions were neglected, and we have to take the correct

limit of Egq. (2.69). When 8 — 90° and o < mLHR’ cosag -1, cos8 - 0

and there is an apparent divergence of the order l/cose. But p

— Oy

Rm

with the order (cose)V_S. At the same time dm = |(A—m)tan6| = o like

l/cose and the integral in Eq. (2.68) - 0 1like %— ~ cos8 (see Appendix
m

A)., It can be shown that H and F defined in Egs. (2.68) and (2.69)

remain finite. Therefore

k. ~ (cos®V 3, g o 00° (4.7)
ig

For \ > 4, there is no interaction around the turnaround point. This
result just expresses that when § - 900, the resonant energy tends
toward infinity, and as the number of particles must remain finite, the
nunber of particles at infinite energy is null. (Boundedness of the
number of particles means + > 3 and therefore from Eq. (4.7), kig = 0
as 8 = 90°.)

The damping is larger for « = 4 than v = 5 because of choice of
normalization. The minimum energy of interaction is always bigger than
100 eV and we keep the number of particles above 100 eV to be the same
for every distribution. As already mentioned in Chapter 3, this means
more resonant particles and hence stronger interaction for harder spectra.

The influence of the anisotropy factor is more complex because of
opposing effects (see Section 3C). Higher anisotropy means stronger
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interaction because of increasing slope of the distribution with respect
_to pitch angle. It means also weaker interaction because of a decreasing
number of particles at resonance (the average resonance energy increases
and particles mirror closer to the equator). Fimally, the cyclotron
interaction acts differently for isotropic and anisotropic distributions.

The most important fact to notice is that for an anisotropy aq = 2,
the damping is never important enough to cause a sharp cutoff, in contrast
to an iseotropic distribution which could explain the higher frequency
cutoff. Therefore, a distribution with a secondary peak in energy is not
at all necessary to explain the observation of high fredquency portions
of MR whistler components as suggested by Thorne [1868]. The anisotropy
of thoe distribution is sufficient for this purpose. Anisotropy must bhe
present because of the loss cone (the more important, the lower the L
shell) and isotropic distribution may not be likely in general, according
to Sections 4B and 4D.

In fact, for v = 5, even an isotropic distribution would yield
reasonable attenuation. Moreover, let us be more explicit about the
normalization we chose and express it in terms of differential flux at
900 pitch angle. At the satellite the total particle density we used
for ray tracing is ~ 2500 cmﬁs. With our normalization (aEl = 4x10_3),
there corresponds a differential flux at 10 keV (see Figure 3.5):

w2 -1 -1

4 -
d&(10 keV) ~ 4x10" ¢m ~ -sec  «.sr eV l, v=4, g=2;

3 -2 -1 -
dd (10 keV) ~ 6x10 cm ~ -s€C ~ .gr 1-eV v =D, q=2. (4.8)

Therefore, even for a value of +; = 4, 1if we take a more reasonable
4 - -

-9 -
value of the flux of the order of 10 ¢m .sec +«gr -eV 1 like Thorne

[1968]1, we do not obtain much attenuation.
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We deduce that the analysis of MR whistlers for monitoring the hot
electrons in the maghetosphere is, at the present time, limited. Know-
ledge of the particle flux is a prerequisite to drawing any conclusions.
It may be interesting though in the future to test whether the high MR
whistler frequencies may suffer high Landau damping relative to lower
frequencies because high frequencies propagate sooner beyond the Gendrin
angle, An experiment to test this effect should be donhe on satellites
above ionosphere irregularities to eliminate the accessibility problem.
An interesting experiment has been proposed by Edgar [1972]. He showed
that it would be possible for a wave excited close to the Gendrin angle
to propagate in the MR mode along field lines, reflect and come back to
the satellite (the "boomerang mode'). On the return path to the satellite,
the wave would propagate beyond the Gendrin angle, favoring heavy Landau

damping.

F. CONCLUSION

We have demonstrated that separable distributions proposed by Liemohm

[1967] are incompatible with Angerami's [1970] observations provided:
1. The theory presented in Chapter 2 is adequate

2. Particle fluxes at the time of Angerami's [1970] observations
are comparable to fluxes observed by Schield and Frank [1970].

We have shown that the model of nonseparable distribution we have
proposed in Chapter 3 is consistent with both these observations and
particle observations. We summarize in this section the implications
of this new model, and the application of our analysis to a diagnostic
tool for monitoring the energetic electrons in the magnetosphere.

Our model of distribution involves a certain equilibrium between

low energetic particles and electromagnetic waves in the magnetosphere
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(neglecting sources and sinks of particles). The fact that the hot
particle distribution may be gquite stable to electromagnetic waves casts
a doubt upon the efficiency of plasma injection experiments.

With our analysis, we have obtained valuable information concerning
the hot plasma in the magnetosphere. Knowing the energy parameter v
from Schield and Frank's [1970] data, we assessed a lower bound on the
anisotropy factor gq of our model from the value of the upper cutoff
freguency of the whistler shown in Figure 4.la. From the condition that
the difference in gain should be small between this upper frequency and
any lower frequency, we assessed a lower bound on the coupling factor
v of our model. This method could be used in a systematic way in a
controlled experiment which would involve a ground based transmitter and
a satellite orbiting near the equatorial plane. Data similar to Angerami's
[1970] or Dunckel and Helliwell [1973] should be obtained with such an
experiment. An experiment using MR whistlers and a satellite seems also
desirable to obtain infermation about hot electrons. The boomerang mode

looks most suitable for that purpose.
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V. GENERAL CONCLUSION AND SUGGESTIQNS FOR FURTHER WORK

The purpose of the present work was the consideration of two prob-
lems. The first problem involves the study of wave amplitude variations
for arbitrary wave frequency below the electron gyrofrequency and arbitrary
direction of propagation. The second problem involves the determination
of a realistic model of energetic electrons of the magnetosphere.

The instability characteristics of a few whistler observations,
whose accessibility characteristics were already thoroughly established,
have been investigated, and limits of distribution function models have
been set up.

The theory we used toc compute the wave amplitude variations caused
by wave-particle interaction (i.e., whistler-electron interaction) was
based upon several assumptions. In Section A, we briefly discuss where
some of these assumptions break down. Section B will present a summary
of our study. Finally, in Section C we give some suggestions for future

work.

Al LIMITS OF THE THEORY
The theory we developed was based on the assumptions that:
A) The expression of the imaginary part Ei of the wave vector k

is obtained from the coupled set of Maxwell equations and Vlasov equation

after linearization.

B) |k, | < [x| . (5.1)

Our purpose here is to discuss succinctly when these assumptions may
break down. From Chapter 2, Assumption A is no longer valid if particle

trapping by the wave becomes important. This occurs if wave signal
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duration is of the order of trapping time, or more. We look briefly at
this question in Appendix B, where we take into consideration:

1. Natural whistlers. In this case, though the duration of the

signal is shorter than a trapping time, the question arises whether the
electron can be trapped because of wave dispersion and space inhomogeneity.

2. Ducted whistlers. For unducted whistlers, the wave moves across

field lines and interacts during a shorter time with electrons which are
compelled to drift along magnetic field lines than for ducted whistlers.

3. The region around the equator, because the important part of

the interaction takes place there (Chapter 3).

We used the criterion developed by Sudan and Ott [1971] and Dysthe
[1971]1 and conclude that in those conditions, trapping can only take place
for waves much more iatense than average intensity waves [Burtis, 1969].

Assumption B insures that:

1. The real part of wave refractive index need not include hot
plasma corrections.

2. The ray propagates along the ray path predicted by cold plasma
theory and the group velocity keeps its full meaning. A "'signal
velocity' concept [Brillouin, 1960] need not be introduced.

In Appendix C, we look at question (1) for parallel propagating waves.

We conclude that nose whistler dispersion cannot be used to test (1), and

that hot plasma corrections should be included at the resonance cohe.

B. SUMMARY OF RESULTS

Based upon the above mentioned theory, a general expression has been
derived for the wave-amplitude variations of an electromaghetic wave in a
magnetoplasma. This expression .is algebraically simpler than previously
derived expressions [Kennel, 1966; Brinca, 1972] and, as such enables
easier computations and allows some conclusions by inspection:
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1. The instability character of each harmcnic of the interaction
is straightforward.

2. The validity of the low-frequency approximation of Kennel [1966]
is tested. It 1s valid for 6 < GG but not for B8 = QR; Kennel's [1965]
approximation is incorrect for the Landau interaction because it neglects
an important term, even for 8 < GG. However this does mot invalidate
his conclusion that at 8 % 0, there is growth for a cone of angle
B < BS’ though his value of BS is incorrect.

3. Significantly more anisotropic distributions are required for
growth when 9 - eR than when 8 = O.

A new model of distribution function has been proposed. This new

class of distribution is nonseparable in particle energy and pitch angle,

or in other fterms, particles of different energy have different pitch-
angle distributions.

Our model is expressed mathematically by

Vq 2
exp[q(vl/v) sin ¢l
fiv,q) = (5.2)

vY

where vl is a normalization parameter. The parameters v, ¢, and
vq have a simple physical meaning: v and q express the energy and
pitch-angle dependence respectively, and vq expresses the coupling
between energy and pitech angle.

This function can be almost marginally stable over a large frequency
band for parallel and almost parallel wave propagation, in contrast to
Previous separable distributions such as Liemohn's [1967]. This model is

more realistic than separable models. It predicts an inereasing slope in

spectrum with decreasing energy, in agreement with Schield and Frank's
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[1970] data. It predicts near isotropy at high energy, in agreement with
Bogott and Mozer's [1971] data. There is indirect confirmation of our
model, in the high energy range, by Kennel and Petschek's [1966] mechanism
extended to arbitrary angle of propagation by Lyons et al [1972].

Fortran programs have been developed to compute total wave amplitude
variations caused by whistler-electron interaction, integrated over a
ray path. The following conclusions were reached:

1. For a whistler trapped in a duct, the parallel propagation
approximation is valild for all frequencies (that is, below the frequency
of untrapping A ~ 0.5) and is valid for nonseparable distributions for
all frequencies except frequencies close to A ~ 0.5.

2. From almost simultaneous measurements of electrons [Schield and
Frank, 1970] and whistler observations [Angerami, 1970] we conclude that
separable distributions previocusly proposed by Liemohn [1967] are in-
compatible with observation. For the class of nonseparable distributions
we have proposed, bounds on the values of the three parameters, v, d,
and vq are assessed. v ~ 5 18 determined by the experimental spectrum
[Schield and Frank, 1970). q ~ 5 is determined by the highest ohserved
frequency, and vq ~ 0.5 is determined by the condition that the
difference in gain between two frequencies is small. The sensitivity
of the parameter ¢q is important. There 1is a strong suggestion that
the flattening of the distribution around 750 eV in Schield and Frank
[1970] is caused by Landau interaction, because a flattening in the
distribution reduces the Landau interaction which eventually dominates
for moderately anisotropic distributions when 8 —~ GR. There is a

suggestion also that a peak in energy should exist around a few tens of
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eV, otherwise the gain.rates would be too large.

3. It is possible to observe whistler waves in the magnetosphere
at a frequency close to the local gyrofrequency, provided the observer
location in latitude is far from the equator, simply because there are
few resonant particles at high latitude. If the distribution is aniso-
tropic, many particles mirror before reaching high latitude. Furthermore
inside the plasmasphere, the refractive index increases with latitude,
leading to an increase in the energy of resonance, and fewer particles
resonate with the wave.

4. Computations of total wave amplitude gain have been done over
some MR whistler ray paths, similar to Thorne's [1968] computations.
However in Thorme's paper the cyclotron interactions were neglected on
the grounds that the cyclotron resonance energies are much higher than
the Landau resonance energy, for A << 1. This assumption is incorrect
if the spectrum is hard encugh, because, though there are many more Landau
particles than cyclotron particles, the Landau interaction is weighted
by a factor which decreases with frequency. However the Landau inter-
action always dominates after the first reflection. Anisotropic distri-
butions greatly reduce the damping so that it is possible to explain MR
whistler attenuation only by anisotropy without resorting to peaked
energy distributions as Thorne [1968] did.

Our model has some implications:

1. This model involves a certain equilibrium between plasma and

the electromagnetic waves that propagate in the magnetosphere.
This situation was predicted by Kennel and Petschek [19661, and
Lyons et al [1972] for high energy particle fluxes. Our analysis
suggests that waves efficiently control the lew energy particles

also.

2. Plasma injection experiments rely on the fact that increasing the
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cold plasma density lowers the particle resonance energy and
therefore increases the number of resonant particles. Wave-
particle interaction effects should then become more important,
and noticeable effects may ensue. However, at times when the
distribution is quasi-stable (to electromagnetic waves) the
efficiency of the experiment is doubtful.

Extension of our analysis to a diagnostic method for monitoring the
distribution of energetic electrons in the magnetosphere may be envisioned.
However a selection in the type of whistler data is necessary:

1. Ground recorded whistlers are_of some value for the purpose of
hot plasma diagnostics. They may be useful to confirm a known change
in distribution or to show that the distribution is not isotropic. How-
ever fhey cannot be used to obtain the precise shape of the distribution.

2. MR whistlers recorded on gatellites and generated close to the
earth are of limited value. The particle fluxes necessary to yield
noticeable effects seem high, and a precise khowledge of the actual flux
is.prerequisite to any f&rther conclusions. High MR whistler frequencies
propagate sooner beyond the Gendrin angle than low frequencies as the
number of reflections increases. As a result, the Landau damping increases
with frequency and it will be interésting to test whether the high frequency
components suffer heavy Landau absorption after the first or second reflec-
tions. To eliminate the problem of accessibility a satellite-to-satellite
experiment is most desirable. The ''boomerang mode' (Edgar, 1972] has the
merit of requiriné only one satellite, transmission and reception being done
on the same satellite. It has the other advantage of using propagation at
the Gendrin angle and beyond, therefore increasing Landau attenuation,
and also, optimizing the transmitting power (Wang, 1970]. A strong

recommendation is made for a detailed study of this experiment.

3. A controlled experiment using a ground-based transmitter and a
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satellite would be most valuable for the purpose of hot plasma diagnostics,
provided that the frequency of the transmitted wave is comparable to, or
higher than, the minimum electron gyrofrequency of the field line of
propagation and provided that the satellite orbits close to the equatorial
plane. In these conditions the energies of interaction can be very low,
for two reasons. The wave propagates a certain time in the ducted mode
with a high value of A (low energy of cyclotron resonance) after which
it propagates in the unducted mode and approachs the resonance cohe angle
{where both Landau and cyclotron interactions become important). Because
the lower the particle energy, the more difficult the satellite particle
measurements, this method may very well prove to be unique in measuring
very low energy particles (of the order of a few tens of eV).

4. Because of the scarcity of available relevant data, we could not
make a systematic test of how best to conduct the process of measurement
for the purpose of diagnostiecs. Two orders of sophistication in the
process are foreseen. The first method would eliminate an accessibility
study and would regquire only the measurements of upper and lower cutoff
frequencies. From the measurement of the higher frequency a lower bound
on the parameter g 1is determined and from the condition that the
difference in gain for different observed frequencies should be minimized,
4 lower bound on the parameter vq is estimated (along the way described
in Section 4C). For ducted propagation, the knowledge of the particle
flux seems a prerequisite (determination of parameter ). On the contrary,
for unducted propagation, knowledge of v may not be necessary, as the
conditions from one ray path to another may be quite différent and from
the observed differences, v itself might be determined (or, it might

be deduced that a different energy law variation is needed to represent
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the energy spectrum). The second method would require the measurement of
dG/dw. This method is more sophisticated than the previous one because
it would first require a study of dG/dw due to accessibility (a problem
only recently approached [Dantas, 1972]), to clearly assess the relative

importance of accessibility and instability effects.

C. SUGGESTIONS FOR FUTURE WORK
Besides the experiments we have mentioned, several suggestions for
future work can be made:

1. Similar computations gshould be done outside the plasmapause.
Going from inside to outside the plasmapause, the cold plasma
density drops abruptly. There is a change also in hot plasma
distribution, but apparently it is not the same change and
probably the instability characteristics are different inside
and outside the plasmapause.

2. A program should be developed to include a general distribution
function for arbitrary direction of wave propagation. In
particular, this will allow a study of very low energy electrons,
when a wave becomes unducted and eventually propagates very
clese to the resonance cone angle. At the same time, hot plasma
corrections to the real part of the refractive index should be
looked for.

3. The stochastic analysis of Kennel and Petschek [1966], and Lyons
et al [1972], which takes into account possible sources and
sinks of particles, should be extended to higher frequency waves
and low energy particles.
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APPENDIX A. PROGRAM TO COMPUTE NONPARALIEI, GAINS

Separable distributions:

Inserting &g given by Eq. (3.6) into Eg. (2.71) yields:

2
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(A.1)

L represent the contribution of the Landau and the

k., and k.
ic

cyclotron interactions respectively to the overall whistler mode wave
interaction.

o

q
sin g _ '2—v rs
f p” 776 (AP,/PoIP,dp, - lpnm

In the last expression we have to compute integrals of the form:

d
B\Jq(m),
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T, 5

Inserting the coefficients B given by Egqs. (A.2) into (A.1)

AYERY|
yields:
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From Eq. {A.2), there is an identity between distributions of different

order in v and q:
B =B - B (A.4)
V42 w,qd  wt2,9

Similarly, there exists a couple of recurrence relationships between

sucessive resonance harmonics. Using the identity

2 2 2m d 2|

Jm—l(x) + Jm+1 T x dx IJm !

m+l,m+1 m—-1,m-1 J1051] mra

o™iy =8 " + [oB -(q+v)B ] (A.5)
vt2,q

V.4 m Ved v+2,4-2

and using the identity
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T _J y
Jm—l(x) Jm+1 2 « 1+ Jm+1) + x2 m
1l 1 1 m-1 1 m+1l,m+1 2m2 mim
Mgy = -2 g T, gy 2 . (A.6)
Vi g m 2 g V) q d2 w2,q-2
m

These last two relations permit us to deduce all the coefficients

00 11
g™ , mn # 00,11, from the values of B and B .
v, g Vs d Vi

When v 1is an integer, the coefficients Bv can be integrated

analytically by means of relations involving different kinds of Bessel

functions derived in Watson [1958], for example:

 ada 2 mm
f ——— J(a) = 1 (d) K _(d) = By (d) (4.7)
0 a 4+ d

where I0 and KO are the modified Bessel functions of first and second

kind respectively.

By derivation with respect to d, we can obtain the values of the

coefficients Bﬁg , m = 0.1, and + even:
mm d o mn
B40 ] Ea; [BEO] 3 etc. (A-B)

From the asymptotic expressions of In(x) and Kn(x) for

]x} >>n, 1 (see Watson [1958] for example), we deduce:

1 4 27
3 + veo

16d 256d5

1
Io(d) Ko(d) ~

2d

1 3 45
L) K (@) ~ 55 - —— - =~ ldf »>1 . (A.9)
l6d 256d

Keeping the first term in Eg. (A.9), we see that

m 1
Byg = ~ 3 l[d] > 1 . (A.10)

For higher values of v, the coefficient Bzg tends also

asymptotically towards a 1/d variation, and from Egs. (4.4), (A.5), and
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(A.6) all the coefficients have this asymptotiec behavior .
For odd integer values of v, Wwe can also obtain the coefficients

n .
B " in closed form (T. F. Bell, private communication], though not by

vq
straightforward derivation. Even for even integer values of v but for
high values of y and q, 2 closed form for Btz requires calculations
of high order derivatives. This may be tedious and it is easier to integrafe
numerically the coefficients Btz for 0<d< da, and use the asymp-
totic form Eq. (A.10) for d > da'
A listing of the program is given in Table A.l, and an example of

the computer ocutput is given in Table A.2.

Nonseparahble distributions:

A program is developed for small values of 8, for a distribution

function given by Eq. (3.22). From Eq. (3.25}, kig is given by:

K k K
ig _.x, %% |(ZL =icl Kic2
k ~Cst T2 k) "\Tx ) T\ k ’

cos B
+ny_—-3
k o n P v
—iL -1 1
(—l-{—-)ﬁ T b %T (vmy +2) — (y+ny +2) J— (C‘K—Se - 1)
n=0 : 9 Ppo d RO
2..2
2
¥ &?_j;llg B - COSQ As_.in_g._ B + i.s.j.d_o B
cos -\ 2,2 cos8-f 0 v+nvq,2n+2 4 V+nq—2,2n+4 !
AL
(—101 ; b—n gf p1 4 cosB-1
k ~ n: |(p 1-1
n=0 R1

Azsinze ’ 2n

L 22" ¥ on)B - o=
¥ |1 + cos@ + (o561 (v+nvq+ n) v+nvq,2+2n T 3v"2+nvq:2n

2
- il (v+2n+ny ) B _ 2n B
2 Vq v—2+nvq,4+2n A v-2+nvq,2+2n ?
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P1

W+hy =3
( 2-A 2

Eicz % -n qn q cosB-/ dz
~ n b =
k n.

4n
2 — — L]
X [(v+nvq+ n) BV“2+H\Jq: ae2n T T Bv_2 +n\,q,z+2n]

Pro

(A.11)

A listing of the program is given in Table A.3, and an example of

the computer output is given in Table A.4.
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TABLE A.1l.

[ --RE . T I N

LISTING OF THE PROGRAM TO COMPUTE THE GAIN INTEGRATED
A RAY PATH FOR SEPARABLE DISTRIBUTIONS.

SWATFLY

INPUT:

nuTPut

LIMITS

AN A OANCONCOOCOOOCONCaANOOOAno N0 Sn0nn0n

IF

bn

—

GO

wh

THIS PROGRAM COMPUTES THE WHISTLER MONE WAVE AMPLITUNE CAINS [IM DB by
INTEGRATED OVER A RAY PATIH WHNSE PARAMETCPS &RF GIVEN Py THE STANFORR
VLE GHOUP RAY TRACING PROGAAM, wOSITIVE INEGATIVE) GATH MEAMS WAVE
GRAWTHINAMPING] . THF ENEAGETIC ELERTRON NISTIRUTION IS PROFPORTEONAL TO
SIN{ALPHA)=EG/P2*N, WHERE ALPHA AND P ARE RESPFCTIVELY THE ELEL TRON
PITCH-ANGLE AND MOMENTUM, MU CAM TAKE INTEGER VALLIES FeOY 4 TN 10,

AND [ CAN TAKE EVFN INTEGER VALUES FROM O TO 13-2%INTLHU/2,. ™ 15 THE
QROER OF CYCLMOTHCN HARHNNTGS. THIS PROGRAM TNCLUDES WALUFS FROM M=d ™
ABSIMI=1 IM=0 FOR LANDAU HARMANIC, #=1 FOR FUNDAMENTAL CYCLOTROM
HARMONIC) )

FREQUENCY OF THE WAVFC(KHZ b, INITIAL ANN FINAL GROUP TIMES
LLEMES 46 AND 4T3,

L VALUE, LATITUDEEDEG.), NORMALTZED FAEQUENCY, WAVE PROPAGATION
ANGLEIDEG-1, NEMSITY¥(CH-3),CROUR TIME(SFL) (LEMES 57 AND 58).

EREDUENCY OF THE WAVEIKHZ), INITIAL AND FINAL GROUP TIMES

L VALUE,LATITUDEFINFGLYy NORMALIZFED FRFQUEKLY, WAVE PROPACATION
AMGLE(NEG.)y DENSITY(CM=3], PLASMA FREDUERCY NNRMALIZIER T4
GYRIFATQUEMEY, PARALLEL CDMPUGNENT OF AREFRACTIVE TNMDLX. MINIMUK
RESANANCE EMERGY FOR LANOAL) AND FUNDAMENTAL CYCLDTROM INTER=-
BCTINNS (KFV .

GAINS TNTEGRRTED FROM INITLAL TIME, TNCLUDING RESPECTIVELY!

ALL HARMOMICS[M<%], LARNGAU HARMONEIC, FUNDARMFNTAL HARMIWIC, HIGHER
HARMONICS s PARALLEL PROPAGATENM APPROXIMATION, Ny AND Q.

HIGH PASMA FREQUENCY APPROXIMATION FDP RFFPACTIVE TWREX, 8UT
IMCLUDE 10KS, RFELATIVITY MOT INCLUCEQ,TR PPINT DIFFERENT yALUES
OF NG AND O [8UT IN THE PAFVIQUSLY DEFINED SANGE), CHANGF
ACCORDINGLY LTNES 126 TD 144, 191 TD 211, AND 254 TO 2T4.

TN INCLUDE DESIEED HUMBER OF HARMCAICS, CHOSE APPPQPRIATE WALUE
OF M IN LINE 24%4.THE IMTERVAL OF INTEGRATIAN IS NTATG=3.02 SEC
DR MORE AND CAM AF CHANGED APPROPRIATELY IN LINCS 63 ANR &4,
THE BISTRTIAUTION TUNCTEDN 15 NDRMALIZER T0 DFe0.0064, WHEPE
DE=PATIC ROT PLAGMA DENMSITY FOM ENEPGY>100FY TN COLD PLASME
DENSITY: CHOSE ABPEOPRIATE VALUE NF BE IN LIHF 248.

FUNCTION FACTORT AL
FURCTIDN FFF(N)

iN.EQ.O) GO TO 2

FEF=1

1 I=L4N

FEF=FFF#*]

T 3

FEF=1
RETURN
END

FUNCTTUM AN (NU,NG)
ANQ=L
JOM=NQ/2+1
DLl JG=1,08M
11 ANQ=(FLDATCIOI-0.5 1 #ANY
ANO= ANQ* 2® {MU-3) /FFT{NQS2)
RETUPRN ‘
ERD

FUNC TIOMN AHO (NG, ND)
BNO=1
JAM=NY 2+ 1

no

13 RND

10 JD=1,J0C%
=RMDS(NUS2.-2 AFLOATLIRY)

BHNU=FFF[NT/2) 28N/ 2
RFETURN

END

ALONG
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240 DIMENSTON ST20F(SCE200,5L1200,5CL 120}

27 NIMENS M GwS L1201 4GASE (200 (GHSLA201,GWE5 (20
z4 AEMENSIAN PEWS 120] .
2% DIMFNSION A3(11.2451)

£ ng=IMTEGRAL FanN+4 § TH PL/2 OF SINXSCOSNES (NI~ 1D, LADNTaRXIOT2,

r D VARIES FkOm 3 TO 5 BY STEP O.1.

C o BIle,%,tl= BIN=0) o H21F,%,2) = A(M=ak} ¢FTC.as

C T1=MIVARTAT N, 123V VAUTAT[NN, T3=D VARTATION
33 NIMENSIOAN RH{LLs &2}

€ [1 FUR MU VAR.Y HMU-3 [2 FA% 9 VAR, = q/2+]1 [3= # VARTATIION

L OANCLErh s L1=80ay012:e2 0 RH(10r6,13=BI5404242)ETC

[« BN(ll-b|2)=81k12|3|?luqﬂ110-542l'ﬁ15r?vﬂyZ}chC.o.

Al INTEGEP AULA6
£ AUsNU aQ=Gs
32 RERL KIK KIKLANSKIKEY]
33 REAL LA KIG
34 REAL INVL
35 RCAL LAT
34 LaGIcal Teurn
37 neoPad L=Lta2
28 nno2an =1Ll
39 READ (G,241 HOINU.L,1)
45 254 FORMAT {FA,5Y
41 ar 200 K=1,1¢
42 READESs 231 1ROINU L JHiR-11eb ), 07246
59 23 FORMATISELA, T}
4% 200 FINTINUE

£ READ THRUT RATA FROM 1LY CLASMA RAY TRAC TNG
45 10091 READ t5,46J) FKC, THAEW.TGLAST

b 450 FURMAT(F| 0.4, FLY.0FL36)
&7 WO TE 16 44552 FRC G TGUEW THLAST
4B 4550 FORMAT{'IFKO =4y Fll.&s * TGI=",F10.564" TULAST=",F10.61
€ FK[ IS FREOQUFAICY SIGMNAL e +HEZ
£ TRUC = JTALSE.
50 Mt L18 1=1.2€C
Al FLWS 1) aq.
"2 GWSI[1=2.
93 GwSL 1) = 3.
L GHSCLT) = 3.
25 BRSSET = 0.
S 118 CONTINUE
57 1302 FEADIG ¢ 4924 AO=907)
% THVL o LAT (LA THETAIDTNS, TG
LY 450 THRMATIFLO WS pFLO 24 Fi2a4,FLD.2,110 4FL2.43
(%] TelL = JMAOT,TRUC
on 1F [ TRUCY THULD=TG
a1 1F {.NOTT2UCY TANEW=TO
62 PTATG = ASSLTGNEWw-TGNO}
43 LF (ATATOLLT.0.02) TRUC = .N0T,. TROC
LY 1F (DTATGLLT.R.02) G0 T 10030
6% DEGHAR = 3.141502/18)
13 IF [SHETALER %01 THETA=289,%9
6T THETAR = THF TA®NEARATD
68 AETA = LA®B.GA&xSORPTICLOATOINENS] ) /FKE
A9 el = {1-LAY#TANCTHETAR)
T OLAN = LA*TANITHFYAR}

¢ INCKS IS NENSITY [M PARTICLES/CURIC CENTIMETEV S
C OETA=MLASHY FRAFOQUFNCY/SOYIOFPEQUENLY
C LASAAVE FREQUENT Y /GYAOFRFJUENLY

€ THETA=ANGLF OF PPwaGarion wiTH RESRELT TO THE =

GHETIC FIFLD
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78
e

8a

Rz
a3
-1

Bb

ab
RT

68
fi
49
al

ag

03
Go

45

ut
98

a9
103
tal
102
L0z

10e

105
104

LT
Loa
Lag
110
it

n

Aano

[alel

Soan

cngTa = ARS(COST THETARYY
SINTA = ARSUSINI THETARDI
OFLTa =l-1/{43»LA)*=2
LNSTAD = CNSTA=LA®DELTA
TALPHA=S[MTA/(Z#ICOSTAD )
THETA HERE [& FXPRESSED 1IN DFOREES
CALPHA=L/SORTII e TALPHARRZ]
piNh = AFTA/SGRTLICASTA-LA®DELTAI¥LA)
RIND=REFRACTIVE THDEX
P10=.02
PETNN=RETALSERTEC1-LAN#LA)
PRIND=PARALL FI. POFRACTIVE [NDFX
RPAR= RINNECOSTA
EPEA=QIHDES[RTA
o= COSTARI) FLA-LA)
S0 = RETA%82 7 {LA=I1-La*%21)
SPac{AFTASLAIR%Z
SF = ETIX B PARAOMFTEY
PRYI=AKS (4 A=L 1/ EPRIMO¥LA)
Sh= STIX D PARAMETIP
TO=2%805{5P}
PRINAT = (L-LA}/(RPAR®LA)
PRIWAT 15 THE FUAD. MOMENTUM NF RESONANCF
BRLI=MOMENTUM FltA PARFLLEL PROPAGATION
wo = B12.
¥l = WIRIPRIWATIR®2/D
PHOWAT = L/PPAR
WLAM = WO {PROWAT)®*Z/Z
PRIWAT §S THE BESCNANCE MUHENTUM FAR LANLCAU [MTERACT TON
PHCLHL = WhlsWLAd
WO=MOECaxz
WCL AND WLAN ARF RESPECTIVELY TH¥ MIN[MUM ENERGTFS (IF FFEONEAMCT FOR
FUNBAMFNTAL AMO LANDAU RESONANCES (IN KFV)
WRITE (64a00)
480 FMRMAT(IO, ! L LT LAMAGA THETA BETA
$ NERS ™ HUNAS WLAN WC1vH
WRLTE (Bp%?3] INVL,LAT LA, THETA,BETA, TCENS, T, RPAR ML AN, WCY
GT0 FORMAT(FLOLG4FLIud,F10469F10.2,F10.2.1104F10.9,F10,2, 2R11.2}
WRITELG 44401
44 FORMAT(Y Gt GHL GHC GWS AGwW
L} N0y .
M=0
IF (M.EQ.0) G0 TR 43
157 COMTINUF
CF1 =(IRETA/LA#42(L+L0STAY + RPERSA2&LA/M)/OD
EMZ TI(HETAFLAI##26(L-LUSTA) + RPEQ+*2*LA/MI/LQ
CMI=CREFFICLENT NF BESSELF FUNCTION OF ORDER (M-1) [N KIG AND
CHZ=CCEFF. OF YCESEL FUMCTION OF ORDER (M+1)
43 PEE = ARS{LA-M) 21 AP ANSLAY
pRM = LURBALTZFI? MORENTUM OF GESNNNANCE {70 PI=MOAC)
[ =ARSC{LA-MIASINTA/INSTA)
1IF 10.EQuD) 50 TO 159
STATEMENT 159 FOR PARALLELE PRAPAGATION
REGIN NEFIM1TIOM OF J3n22 AND J1#x2 TERMS
INTEROOLATIOM FOP Q=2
535 RJ=10%D
JEINT(R)
B0 95 L=1.2
a0 95 MU=1.11"
1F ADLLTL0a1) SMEINU, L L] = BOUNULL ot + DE#241005(AD(NULL,2)
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112

(R
114

115
1T
1y
119
119
Lz0
[¥-3)
122
123

124

L
128
127
e
124
130
131
132
13z
134
130
136
Li7
138
135
140
lal
laz
142
lid
145
144
147
146
Loy
150
L5t
15e
152

154
155
156

155
Lsw
160
16k

+ -R
1F
BRM(

DLHUSL, 11
[ (N.GE.D.L)
NUsLst) = (72

WAND. B0 Ta5.0

J=11

e [(NO(NU,L,d*+Z) - ROLNU LS+

C ASYMPTOTIC FXPRESSION WHEH DS

DuGEaS.) BM{MU, L,LI=BCINUsLeST)
45 CONTINUF

C END INTERPOLATION

iF(

C COMPUTE
nn
»TR
pa

H{N-=21 &8N0
12 L=1,2
UEa( -1
12 J0=1,%

JHM=]1] 2%
NGTRUE=2%J]

nA
AN

10 SR = Led
N JGELy L)

10 CONTINUE

12 CONT INUE .

£ END OF DEFINITION AF JO%%7 AND Ji*#2 TFRHS
IF {.&E.D) G0 TO 163

C HEGIN LANDAU TERW

Lo}
IF
[F
IF
IF
1
IF
IF
if
I¥
1F
IF
I
IF
iF
1+
Ir

I
NU=

W=

5100 I=ty 10
10.F0.1) A=
11.FQ.2} AlU=
1l.EQ.3) AU=
10.FOa8)
ilave.5)
LIEQes]
(T.FQ.T)
(l.rFo.8)
(Lol 0.9}
il.Ee.10]
[I.f0a1 1
tl.e0.2 |
1[.FR.3 )
11.EQ4
(Lebide® )
13.68.5 1
[T.862.6 1}
1L.EQ.T
(1.0wed )
(E.Fa9 )
1l.tD. 0]
AU
AQ

JNU=NU-D

Jo=

TL
1F
TF
172

SUMIL AN

NR/2+1

199

MM

LLY FDR &

= RN{JNU,JQ,L3 — RNIJNU+Z.JQ. L}

4
&
2

= (APACKPPIRI*#24BNIINUSZ » I Gy L1/C02%2
NEANAINU,NQ+ 2) *RPAPHRPLR#SDGHCD %2

INaLTuda21 T
{2.6E.3.21)

2=

+ BO(NU,L,J*1)

= {TNOs2 e (a2 p 30 1= (HUeND+ 2 ) SRN (JMU+2 . 0D¥ 1, 10}
& KEPARERPIEASNEH/|NEr)a02)
T3 =(SNEHITR2ERN{IMIL,J7+1. 21/ CO%e2

2= fNIENI R T]=T2+73 %4

SUMLAN=SUMLANTIPIO/Bby ) ee iNU=3]1 2 ICOSTA-LA] /L}
(B GLe N b SUNLAN = SUMLAN®S/D

I

SUMSUIML AN
S{L1 o= SUM
SLET) = SuhklL AN

5107 CONTINUE
C FND 1ANDAU TERM

i26



162
163
los

L&5
A
167
1459
169
179
171
L7
LT3
Y74
1%%
176
1%?

1ts
179

184
141
182
123
14
IAS
1.0t
a7
133
18%
194

171
152
193
194
L9y

2la

143
END
RFG

Is¥xEal

14

z

x

24
wiY
€oCom

Cornn
€ BFG

rz]
G 7O L57

COmTINUE

COMPUTING THE CACFFICIERT BINULIMMIIN)

IN TERMS It JZ2e%2 AMD JI&d2 aMI) SURRR [OR CROFRS

CAOMPUTE RIMU.De2 2] .

NUM= 9

MTRUE=M+

MHMTHUE -2

IF IMUMLLT 4 GO TN 1001

NN 28 MU=ty MUK

ANIL2=MUsbad ] = BEICNDr Ly ld = 2#(NULDIISANTNG2, 1 2 ) /D=R2
ANIL2-NU, 6, 21=1

CHONT [NUE

NUM= MM =2

IF [HUM LT.O} GN I 4%

D 29 As=l,MLM

PNILZ=-NUSel b = BMNI12-FUrGy L} =~ BNILO=HU 5, )
BRIIZ2-NL 52 1 = (0N {NIe 2 LP+BROL2-NULS, 10104
e LsDIRe2

ConTINUE

CONTINYIE
PUTE AINU, I==0 AHT 2,2, 20 AN RLHU.Q~=T AAD 2,0,2]

B A5 L=1,2

O3 Ji=1,2

MOTROUF=s2a )i+ 2

R ER L RS N b

[ (N LTy GO 21 398

DUOLL JKYUSTp JHM

AMIE2=JNU 6= J2,L) = AN{L1?=JNU,&=J2,L} = PHII2=JdMU+6=10, L}
CUNT [NUS

CONTINUF

CONTINJET

COTINUIE

TERMS J2=02 AND JJs)2
IN FIARST CYCLCTRON TEdM
N oSLal 1=1,172

IF (150411 RU=4

17 {{.7n.2) Au=4

[F T1.FL.3] Al=4

I¥ AUz4

e A=5

IF Ay=5

17 AL=3

I+ AYzh

TF ITaEQ.?) =4

TP 11.E0.131
I+
k3
1k
1F
iF
i
[F

¥
FALALISE T IR S8 R

JusNGSo+l

127
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z21% JHENH-3

2io F2 = 2eCrlecy2 = [ 0| 12-08, T=JQe2 PoMENA/LA = (MOsbUL »
& ANIL2-JF ye=d0,20 )
217 IF 1D.LT.0.2) T2=2
21e IF 1IARSIM™) . 0Tal) T220
215 TFAM) Lale2
220 1 CUNTIKUE
221 I 15T, G712 -
222 rvL2=GML
223 FMi=CM2
224 CM2=CH1Z
23% 2 Tl = CMLeST % RULGH g0y TEEMENQ/LA - INGEYUNSAREIN I+, L H
224 IF (M. T.-1) Ti=1
22T IF (M.F 2.2}
$TL = CHMLE®Z & 8" (UM, S0, 2)MENG/L S — (NQEHUTRPM{ N, IR L, 2) )
226 T3 = Chaws? & § BHOL7-gM, T=JO, J1eMeNQ /LA — (KG+L) o
$ RNULZ2-dMeH—dis 1) )
229 LR PLE PR

871 = CAL%&2 % { BNILP=jHy T-JJa 1T EMeNT/LA - (NAHMH) 8
$ BNIUL2-dt yh—die 1} )
6 LDl T a T 21 AN EM, B 9.31) T1=0
IF (DLLTa2ad) TR=2
IF (TARSIM],CT.1Y T3=0
SUMCYC = Tr+T2+073
SUMCY[ =3 YCR{ PO /Ped) en{NU=3 ) 0aARS((COSTA-LAY/ (M-LA])
IF t0fFeBal SUMCYL = SUMCYL %5/
SRerd o= Lumeyr
SE1) = S(11 % 504
fF (HFQaLY SCICT
SLOt CONTIMUE
C FND FIAST LYCLDTAON TUIM
€ RETURK T IR DERDER HARMONIC

SSiMCYC

240 IF €4) 159,154,198
4l 158 M=-#
242 Go TN |57
253 156 M = [ABS(R]IA]
2ot I2 (TARS(M)LETL3 G GO T 1221
244 G T LeT
COEND FOTURN TA HIGHFR WNER HARKONIC
246 107 COKTINUE
247 159 {ONTINUF
C SURPPOGRAM FHIR PARRLLEL GAILN
745 NE=a0J%
269 FLAY = LATHOFLEAD
259 X = SIMLRLATI
C IMVL=INVORTAMT LaT[Tyns
C NF=PATID HOT PLASME DENSITY EOP ENERGYPLOQEV T GOLD PLASMA NENSITY
L LAT=LATITUNE
C ATaNIRMALLLED wACMFTIZ FIFLN TO FOUATORIAL VALLF
251 AT=SURTCL 3% N6 | FL]1-K2aZ 233
252 PiR=P10G/PR]
P53 N0 OSL02 I=1413
254 IF [i.fQ.11 au=4
255 IF (150421 Ati=4
256 IF (1.EQ.3) Al=2
287 [F (1.0Q.4) oU=4
250 [F {1.6Q.5) au=s
259 IF (1.60.061 AY=3
260 IF 11.FR.T1 RU=3
201 IF €(1.EQ.A1 Bu=&
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262
763
264
265
2hL
267
2hi
267
270
7T
212
273
274
275
276
277
2T
274
ZR0
28l

284

ens
24h
287
288

289
280
271
21z
293
2G4
295
2G4
2971
298
299
300
301
a2z
303
A4
305
306
307
308
309
3G
31
i1z
3113

314
3%
314
E1 g

aonon

%

AVGL
RORMALIZIED TO C

WIW'S ARE IMUAMECANFRE
PKIE=KIK FO& PAPALLEL PEOPFAGATION

IF LT.EQ.9] All=n
{1.,5Q.300 Au=&

A=z
AMl=4

NG=AQ

COEFRC==art &AL el
PSUM=RBNO (NG N = (2
Pl ReEw(NY=T)

PHI = —(NEFRC=MSL
ARVGC=SOFTILAY* 50
PUIW=~-PRTK*APYLC R

AND APCGHC = MODULUS DE GRIUP YFLOCITIES (GENERAL amp PARRLLELCASFS)

PLOEFG=-16AN0I%ATS
PG 1000=PCUEF G*PK IR

END SUHPRUGRAM FOR PAR

&30
sla2

909

$

+

COLFRI= CNEFKC
*CALPHAS( LPSTA)
KIKLAN=COEFE[#SLIL
KIk=CDF FXI*SIT)
KIKCY L=CUFFKI&SEL(
AVGC=SURT (L A2 (CDST

*(3,141592/R)#PES( LSBT Ioo{NO/2)
+UL-L/LAMEND)

"

UT{1-LAY*#242DETA

[HE

(MR}
LARDR TND/ [NVL#43
ALLEL GAIN

Er'y)
)

11
A PE(4%{CDSTAD  p*s2eS [NTaxa2) )/

IPETACOATA+2%L A% 1-NTLTAY)

COFW I W=AVGCRRTND
WIWLAN==K LKL ANST 0¥
WIWCYL=-KIKCYL®( OOF
WIk=-KIK&LOFWIW

WiW
Al

COEFG==-160000%L A ATER 1HGS TNVL*+3

GlO003CDEFG=KIR
GloOOL=COEFG2KIKLA

N

Gl1OC0C=COEFG#KIXCY]
GlO00S = GlOCO-G17200L-G1laa0C

1F {ARS(PGLO001.5T.1.E-30 } RATIOG

61003/PG1020

IF [ABSIPGL2O0).LT.1.F-20 ) RATIOG = 123456
IF ID.EQ.J) RATIOG=1

COEFGH = B6REYFRO*5.233184

Piiw = CUEFCWANTATGHPHIW

GW

= CORFGUALTATG®WIW
GWL = COFFGWsRTATGRAUTWLAN -

fWC = COEFGHHDTATGRWIWEYY

PGHS LI}t = PGHSIL]
Gws {1 = GUWS (1)
GWSLL [} = Gust(]|
GWMSC(I) = GuSCIT]
GWSSIEY =
WRITE{56,4301
FORMAT(S5ELZ. 242141}
CONTINUE

IF (TG.EQ.TGLAST)
GD TO 10000

STOP

END

+ PGW
U

+ GHL
+ GO

GHE(T)=GWSLEII-GWSCI N

GWSCL),GNSLET I+ GWSC{T}oGUESET T PGHSTY ], AU4AT

GO TN 10001
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TABLE A.Z2.

AN EXAMPLE OF THE COMPUTER OUTPUT OF THE PROGRAM LISTED IN TABLE A.1l.

FKGn 8.7000  TGR=
L LAT
4.61105 24.11
GuT GWL
~3.506E D} -0.190F-01
-2 7576-01  -D.862E-92
G.784E 0O -D.507F-32
J.660E 00 -0.304F-D2
-0.328E DL  -0.124E-N1
~0.3495-01 -0.321F-32
0.269E 00 ~-0.1156-02
-0, 149 Ol =0.730E-02
-D.1375-0L -0.145F-02
ULO5EE-01  =0,37YE-03
L LAT
4.41125 23.51
GWT Gl
-0.135E 02 -0.375E-01
-0.239F 09 =0.L¥5E-01
0.167 01 -0,1d2E-01
Aal7E 0l -0.616E-02
-0.776E QL ~3.252£-01
-0.1735 00 -0.6616+02
0.A52E 00 -0.739F-02
-0.374F 01 =-0.151€-01
-0.725E=01 -0.3058-02
0.2298 00 =-3.912F-93
1 LAT
4.61185 22.82
Gl GHL
-0.236E 02 =0.557E-0L
-0.105E @1 -0.261E-0%
0.272E 01 -0.152E-01|
0.254F J1  -0.936E-32
-0.1466 02 -D.3IB5E-01
-0.550E 08 ~0.]1035-01
Q.114E 01 -0.37T4E-02
—0.772E 01 —=0.236E=01
-0.253E Q0 -0.486E-0Z
0.435€ 00 -0.132€-02
L LAt
4.61193 22,38
Wt GHL
-0.310E 02 -0.656LE-01
-0.169E 01 =-0.310E-0U1
0.342E 01 -0.182F-01
0.330E 01 =0.112E-0L
-0.20LE 02 =-D.463E-01
-D.03ZE OB -0.124E-01
0.149E 01 -D,456E-02
-0.111€ 07 -D.2BTE-A1
-0.4526 00 ~-0.607E-02
7.593F Q0 -0.165E-0Z
CoL LAT
4.61234 2t.94

0.443000 THLAST=  2.01
LAMEDA THETA
0.5091 3.27 9.
5WE GHS
=0.603F 01 -),8%8F-02
=0.707E-21 Ja3TeF~02
A.782F 00 0. TO9F-02
N.L57%F ov D.623E-02
=2.374F 01 -0, T7Q7F=-03
=0.319E-01 Qe 2045-03
D.290F 09 J439LE-03
=1.149F 31 -9.601E-04
-0.123-01 QJa133E-04
Q.Fe2F-0) 0.+245C-04
L ARRDA THETA
Bes274 dei Lo.
Giwe GWS
-0.)13%E 52 -2.1T73F-Q1
=0.369F 10 0.695E-02
.17 01 0. 137E-01
Qul4bl 01 e 123E-01
~Q.773F N1 ~-3.taif-D2
~Ja.1l&TE 3] 0. 3A48E-03
A.65F 23 UJ.T8LF-02
~0.37%E 01 -0.12T7TE-03
-0.695F-21 A.27TLE-D4
¢-2300 29 JeSLLE-04
LAMPRA THETA
0.5400 2,52 10.
HiWC OWS
—0.236FE 02 ~-0.248E-0L
-0.103E 01 0.952E-02
Q2.272F Q1 J.198E-01
G.253F a1 J.180F-01
~J.l46F 02 -0.212E-D2
-0.540F 4O 0.546E-03
O.114F 31 d.117E-02
=0.769F 01 -0.194F-)3
=0.248F 40 0. 397E-04
0.436E 00 Q. 800E-O4%
LAMBOA TH{T¥A
Q5631 Z2a24 ¥ 0.
CwC GWS
—0.309E 22 -0.Z8RE-OL
=0.167F 01 d.106E-0L
J.341F 01 0.228E-01
0.329F 21 0. 212e-01
=J.700E §2 -0.?%2E-02
=3.923F 04 0.627E-03
0.t45€ 01 0.136E-02
-0.11lE 32 -0.237E-03
=J.844E )0 Q. H64E-D%
1 .59%E 099 0. 9T5E= 04
LAMBNA THETA
5770 1.97 to.

L1502z

BETA DENS
76 345
PGM
-0.6CHC OL
-0.76TE-01
0.784F 00
D.865F 00
-0.327E Q3
=0 232E-01
0.2909€ Q0
-0.149€ Q1
=C.1207-01
0.965E-11

BETA DEMS
o7 347
PG
=0.135€ 02
=3.361F 20
0. 1687F D1
J.147E 01
=D.776F 0L
~C. 170E O
Q. £54F 00
=0.3%%F 01
~0.703F-01
0.231F QO

BETA DERS
44 339
PhN
~0.736F 02
~Q.105¢ Q1
0.272E 01
q.253F J1
=0.146F 02
—J.545F 00
0.115E Q}
=0.772F 01
~0.250F 00
0.437F 00

HFTH DEMS
L1 336
PCW
=0.210F Q2
—-0.1TOE D1
G+3%1E Q1
0.329F 0}
-Q.20lE Q2
—0.925E 0O
0. 150E 01
~0.111E 02
~0.4%8E OO
0. 556F 00

BETA NENS
89 334

TG MRS
0.0204 19.51
ML D
& o
4 2
4 4
4 b6
5 0
S 2
5 4
6 Q
& 7
& o

TG MULDS
0.0439 20.1%

L U R R
FPNQFNOOC OO0

TG MICS
0.0733 20.9%

MO ©

4 a

& 2

4 4

4 1

5 a

5 2

5 4

& 0

6 2

& &

e MUCIS
0.0937

Ny

P

4 2

L3 4

4 6

5 9

5 2

5 4

5 a

& 2

& &

% MuCa S
0.1148 22.02

WLAN
2.672F 00

WLAN
0.630E BQ

HLAN
0.%83E 00

WL AN

21.827 0.,%55F 00

ALAN
0.528¢ 0O

ACY
0.525E 00

Wl
0.506E Q0

WCl
0.373E 0O

dACl

0.334E QO

WC1
0.284E a0



TABLE A.3.

SWATFIV

[
C
c
[=
[
c
C
C
A
c
£
<
<
v
C
<
[
C
|54
c
4
C
.

¢
C
c
C
C
c
<
€
<
C
[
[
C
c
[
c
[
c
£
C
C
<

008w O A N

TH1S PROGRAM COMPUTES THE WHISTLER MUDE WAVF AMPLITUNE GAINS (1 DR.D,
INTEGRATED DVER A RAY PATH WHOSE PARAMFTERS ARE GTVEN 8Y THF STANFCRD
YLF GROUP RAY TRACING PRUGRAM. POSITIVE [MEGATIVE) GATMN MEANS wAVE
GROWTHINAMPTRG) . THE ENFRGFTIC ELECTRON DISTIBUTION 15 EQUAL TOD DNE®
lﬁllﬁ‘PlI'H(P—DH]*EKPI0‘[P1IPI3#NUQ¢SINIALPHA)*'Z/BTI!P#*NU.WHFFE
ALPHA AND P ARE RFSPECTIVELY THE ELECTRON P1TCHM—ANGLE AND MOMCRTUM,

H I5 THF STEP FUNCTION, Al AND PLI=100EY) ARE NORMAL [ZATION CORSTAKTS,
RT 15 THE MAGMETIC FIELD NORMALTZED TO THE EQUATARTAL VALUE, NU Cah
TAKE ANY YALUE 4. 0 AND NUDQ CaAN TAKE ARBITRARY YALLES.

INPUT =
NUs CaNUQ LLINES %6 BNO 47)
FRERQUENGY DF THE WAVE{KHZ), INITIAL ANO FIM&L GROUP TIMES
{LINES S8 AND 591
L VALUE, LATITUDFIDEG.)s NORMALLZED FREQUENCY. WAVE PROPAGATLON
ANGLEIDEG. b PEMSTTY(CM—-2),GROUP TEMEISEC) {LINFS 53 ANO 700,

OUTPUT:
FREQUENCY 0OF THE WAVEIKHZ). INITIAL AND FINAL GRAUP TIMES
L VALUC.LATITUDE(NEG. ), NORMALIZED FREQUENCY. WAVE PROPAGATTON
ANGLEIDEG. 1 DENSITY(CM-3), PLASMA FREQUENCY NORMALIZEDR Yo
ANGLE(TFG. 34 DENSITY{CM-31+GROUP TIMF(SEC) {LINES &9 AND 73).
GYROFRFQUENCY, PARSLLFL {OMPDNENT OF REFRACT IVE INDEX s MINTMUY
RESUNAMCE ENERGY FOR LAMDAU AND FUNDANENT &L CYCLDTROM INTER-
ACTIOMS IKEV1, €Oy Dle AND D2.
GAINS TMTESRATELR FROM INITI[AL TIME, INCLULCING RESPECTIVELY:
HARMOMICS M=0,1,2; LANDAU HARMONIC(M=Q)i FUNCAMENTAL CYCLDTRON
HARMONICIM=1} § 2N0 CYCLOTRON HARMOMIL(M=213 PARALLEL FROPACA-
TION APPROXIMATICN,

LIMITS:
HIGH PASMA FREQUENCY APPROXIMATIOM FOR REFRACTIVE INDEX. BUT
[NCLUDE IONS, RELATIVITY NOT INCLUNED.

THE [NTERAVAL OF INTEGRATION IS OTATG=0.02 S5EC

OR MORE AND CAN BE CHANGED APPROPRIATELY IN LINES T5 AND T6.
THF NISTRIBUTICON FUMCTION 15 NORMALTZED TD DE=0.004, WHERE
DE=RATIO HOT PLASMA OFNSITY FDR FNERGY>LOQQFY TO COLD PLAGMA
DENSITY: CHDSE APPROPRIATE VALUE OF DE IN LIKE 98,
THIS PROGRAM I5-APPROXIMATE AND NNLY VALID FOR NEAR
PARALLEL PROPAGAT IfIN. HARMDNIC OF HROFR M CAN BE CONSIDERER
AS APPROXTMATELY CORRECT WHEN DM<O.3 WHERE NM=00,01,02 IF
M=0.1,2.
CHOSF APPROPRTIATE VALUE DF PH TN LINE 187,

FUNCTICN FACTDRIAL

FUNCTICN FFFING
TF (N.ER,D) GO TD 2
FFF=1
DO I T=1.N

L FFF=FFF¥]
Gh TD 3

2 FFF=1

3 RETURN
END

FUNCT [UN ANGINUL NG )
ANC=1
JOMZNO/241
DO L1 4D=1.J40M

E1 ANQ= [FLOAT{F0)-0.5 )€ ANG
ANG=ANDSZ% (NU-3) FFFFLNO/2)
RETURN
ENQ

FUNCTION SMQIUNLNG)
BNQu]
JUM=NO/ 241
00 10 JQO=1,JQM
10 BNQ=BNO/IUN/2.-2. FFLOATI SO0
BNO=FFF{MG/21#BNOS 2
RETURN
END

LISTING OF THE PROGRAM TO COMPUTE THE GAIN INTEGRATED ALONG
A RAY PATH FOR NONSEPARABLE DISTRIBUTICNS AND SMALL WAVE !
NORMAL ANGLE.
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2& FUNCTION AHATIUN.NO.P)

21 ANOT = Pax|UN-21/{UN-2)

28 IF (MGLFR.C) GO TO 8

25 NCM = NO/2

34 N0 9 M=i,NQ#

31 11 BNOT = BNQT +{-L)=#HX[FFFINCA2) )/ (FFFIMI*FFFINQ/2-M))
$ % PHBCUN-Z#23H3/ LUN-2+2%M)

£ 8 COMTINUE

a3 8 COMTINUF

34 RETURN

35 END

346 REAL KIRS

a7 KE&L NC

an RFAL KIKLY

EL] RFAL KK KIKLAK RTKECYL

%0 REAL LALKIG

41 RFAL [RvL

42 REAL LAY

%3 REAL KIKLsKIKEKRIKEU

44 REAL NU

45 LEGICAL TRUC

48 RTAM{ 5,199} NUL NI UN

AT 169 FORPMAT(3FLG.O)

48 WRITFLE, 1981 NULHO.ON

49 198 FORMATI *MU=',F13.3,'0=' JFLO.3, 'NUQ=",F10.3}

50 MPl=3.1415%2

51 A=1l./(NU=-2)

52 =0

53 20040 N=N+1

54 ANFW = Mg 2ENz2 w2 {2aN]) SEFF(M] S{FFFI2%)+1) 2 INU-3#N2QN)

55 A= A o+ ANEW

36 1F (ABS(ANEWI FARS(A)L6T..00L) 6O TC 2600

5T 2001 A = lo/A
C RFAD [MPUT NATA FHCM COLD PLASMA RAY TRACING

58 10001 RFAD [ 5,460,E£NN=99 ) FHL L, TGNEW, TGLAST

59 460 FORMATIFLO W& FiG.b,FLO.0)

&0 WRITE(&,4550) FRC +TGNEWSTGLAST

&l 4550 FORMATI [FKC=Y, FlO,4. * TGHO=*4FiQ.64" TGLAST=*,FID,6]
€ FRC 15 FRFQUENCY SIGNAL 18 KHZ

&2 TRUC = .EALSE.
] PGWSUF = 0,
' 64 GuwTSumM=C.,
€5 GHLSUM=0.
&6 GWLSUM=0,
67 GWLLSM=0,
68 GHSSUM = N,
[ GeLUSM=U,
70 10000 BRAD[S 44D} INVL LATSL3, THETA, TDENS.TG
71 490 FCRMATIFLO.52F10.2.F10.%4,F10.2,110 LF}0.6]
12 TRUEC = JAOT.LTAUC
13 IF (TRUC) TGOLD=TG
14 [E [JDT.TRUCK TLNEW=TH
75 RTATG = AQS | TGNER-TGALDL
76 IF IDTATGLLT.0.Q2) TAUC = .NDT, TauC
77 I[f {poTafg,Lf.7.02) GO Y0 10200
8 OFCRAD = 3,141562/7180
75 THETAR = THFETADEGRAD
ac BFTA = LAZ23,984%SURTIFLAAT{INENS) F/FRC
a1 CCL = {l-L &) kTANI{THFTAR)
a2 CLAN = LASTANITHST AR}
C IRENS 15 DFNSTTY I8 PARTIGLESFCUBIC CENTIMETERS
C RETA=PLASMA FREQUFRCY/BYROFRFQUENCY
C LA=WAVE FRFOUFNLY/GY2DFRECUFNCY
C TEFTA=ANGLE NF PRIPAGATION &]TH RESPECT TITIE MAGNETIA FIFLp
C EKD AF GPLE PLASYA PARLMETIR CECLARATEON
LE] CNSTA = ABSICOSITHETAR))
A4 SINTA = ARSISIMITHETA®Y
85 OFLTA =1-1/(R3%LA) %]
[:13 CASTAN = COSTA-LA®DELTA
er TALPHA=STNTAF 123(CO8FAT

C THETA pERF |5 FXPUFSSED I~ NEGREFRS
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an CALPHAZL/SORTIL+TALPHARR2)

BG RIND = RETASSQORTILCOSTA-LA®DELTA)BLAY
£ RIND=RFFRACTIVE INDEX
St P10=,02
91 PRINN=0BETA/SORTLLL-LAIHLE)
[ PRINN=PARALLEL REFRACTIVF IMDEX
92 PPAR= RTNN®COSTA
93 APFR= [NDESINTA
94 H = COSTA%{1/LA-Lal}
55 S o= RFTA®®Z / [LaR{Ll~LA®®2)}
55 SPo—(BETA/LAN#*2
C SP = STIX P PARAMETER
57 PREWAT = [1-LA}/{RPARELA]
£ PRIWAT [5 THE FUND. MIOMENTUM OF RESONANCE
C SUBFROERAM FOR PARGLLFEL GAIN
EL] OF =004
94 RLAT = LAT*DEGRAD
100 ¥ = SIN(RLAT}
C TNVL=INVAPTANT LATITUDE
f. DF=RATID HNT PLASMA DENSITY FOR ENFRGY>IQOFY TO COLT PLASMA DFASITY
C 1aT=¢aVITUDF
C BT=MORMALIZEC WAGNETEC FIFL T9 EQUATOREAL WALUE
141 AT=SORTIL+3&N&82) /(L —XekZ)¥¥3
1c2 PRP=AAS (L A=L}/ {PRINC*LE)
143 PPR = PLOSPHP
104 CNEFKC = -A*[PIPL/B)NT
105 PRIK = PPRE*(NU-3]) *[(PIPI/41%DERUNG( NL,O)
104 nM=Q
1c7 1000 N=N+1
1ce PUEKNR = [ L/RThoshNs{L+h 1 = PPRE(NU~3+N*ONI*
S [PIPI/4Y*DE®INQE*N/FEE (N * BNOONUSN*ON, 24N}
109 PKIK = PKIK + PKIKNW
119 IF [ABSIPRIKNWI/ AQS [PKTK] JGT..00L})
s GO TN 1020
11 k=1
112 AKER = {L/BT ) sehs(—HiLA 1 & PPR*F(NU~3¢NSONI*
£ (PIP1/4I*DNE={ ROSRNJFFF(NI] * BNOINUSNEQN, 2*N}
113 1051 N=N+l ‘
114 ARIKNW = | L/RTIFEN®(=N/LA 1 A PRAXE(NU-3+K*QN }*
4 [PIPT/4]1*0F «(NOs&N/FFF(NI] * BNOUNU+N*QON, 24N}
11% AKIK = AKLK + AKLENW
11e IF {ARS{AKIKNK) / ARSTAKIKY .GT..001)
& GO TL LOCl
117 PKIK = A * (PKIK+AKIK)
118 APVGL=SGRTILA)* SORT{1-LAls*=3x2/6FTA
115 AVGC=SORT (LA (COSTAD  I¥14#CCOSTAN  Jox2+5[NTARF 2}/
S [AFTACOSTA+Z%LAS (L-CFLTAN)
120 PHlW=-PKIK*APYGLER IND
C AVGC AND APCGHE = MODULUS OF GROUP VELOCITIESIGENFRAL AND PARALLFECASES)
C NORMALIZED TG €
C Win'S ARE IM{CMEGAI/RE IGMEGA)
C PKIK=KIK FGQ DARALLFL PROPAGATION
121 PCOEFG=—1A0J00SRT#LASORING  AINYL 443
122 PG1000=FLNEFG*PK K
123 PRIWAT = |1-LAJ/LRPARELA)
C PRIWAT IS5 THF FUND. MOMLCNTUM NF RESONANCE
€ PRI=MOMENTIIM FRR PARALLFL PREPAGATION
124 Wo = 512,
12% WE1l = WO*{PRIWAT e *2/2
12e PROWAT = L/RPAR
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127
128

126
13g
131
132
133
134
135
136

1a7
138
13%
140
B4l
La2
141
l44
145
14&
147
148
149
15¢C

151

182
152
154

155
154

L57
158
15%
160

L&1
| 1-¥

163

1&4
16%
léé

ler
168
16¢
17¢

WLAN = WO*{PROWATI*>2/2
C PRDWAT IS THF RESOMANCE MOMENTUM FOR LANDAU INTERACTION
RWC LWL = WLL1/WLAN
WO=MOeLws2 .
WCL AND WLAN ARE RESPELTIVFLY THE MINIMUM ENERGIES OF RESONEANCF FCR
FUNDAMENT AL AND LANDAL RESONANCES (TN KEV]
= LaaS[INTASCOSTA
N1 = {1-LAI#SINTAZCOSTA
02 = {2-LAJe5INTASCUSTA
nNO=aBs (N
D1=ARSiNY]
L2=AB5 (D2}
WRITFLG 251
2% FORMAT('Q L Lavy LA THFT & RETA DE
SN5 TG MUCUs Wl AN WC1 ro oL navy
WRITFLG 28 NMVLy LAT LA TRETA,BEFA L TOFNS TG, RPAR «WLAN,NCL DL, D1 402
26 FORMAT {SFLO.44 110 F2O.4,F20.2.2E114343F5.21]
CO = 2®AR5|5P)

om0

CIL = [RPAREBPLH/LOI®42
GCZL = RPARARPEREMESO/COS2
¢al. {SDFH/CO ) eel

1IBFTA/LABC 2o 14COSTAY+RPERTIZEA/L) /CD
AIBETA/LA® 25 (L+CLSTAI#RPERF®2SLA/21/L0
/RPAR

1-LA)/(LASRPAR)

= P1O/PRO

= PlO/PR1

= (2-LAY{LARRPAR)

= PLO/PRZ
C BEGIN LANDEU TERM

SL = —NU*[CDPSTA/LA=1)*[PORI&&{NL-3])*as
$o(CIL*BNCINUH2,0)-C2ZL*BNTINI, 21 ¥D0+ BNOINU-Z,4 ] #N0*€25L3] 74 )
N=C
IN0C NeN+)
SLRNA = —(1/ATI NS | NDH*ENSFFF (NI (NU+2TN+NECN) 3 {POR) % [NU-3+N&CN}

$ 24z (COSTA/LA-1] @ | CLL*BNOQINUFNZQN+Z,28N) — D2LSANRINUSNEQN 4
29N+ 2} 200s CILEAMGIRNUSNSCHN-2, 4+ 22N SN0%%2/%)

SL = SL+SLNw

TF {ABSISLNWIFABS{ SL} ,GT..001) GO TD 3000

C FND LANOAY TEZM
SLU= —NU#{COSTA/LA—LI*{PCRIE*{NU-3)%4 *(CLL*BNC{NU#2,0})
h=0
2695 N=N#1l

SLUNW= —{1 /3T 43NS (NUSN/FFFINT]% {NU+Z¥N+N*ONI*{PORI®{NL-=3+NECN |
§ *4*(COSTA/LA=L) & | CLLeANQIMUSNSQN®Z, 23N} }

SLU = SLu+SLUNW

1F {AB5{SLUNW} /AR5 ({5LYI.GT,..001] GO TC 2999

C 8FGIN 1ST CYCLOTRON HARMONIC

SC = -P1Pea{NU-3} & ({COSTA-LAJA{L-LO}} # CLl%2?

5 ORCNUSBNGINUL2) -, 50#D] «*Z2*NUXBNU (NU-2,4) |

N=0

30401 N=h+]

SLNW = ~PLR&& (NUNSON-3) 2 { (COSTA-LAI/IL1-LA} P#CLLe% 2% [JETI¥N
b F{NO*ENJFFEFIND}*

0 LNU#2PNNECNI*BNO L MU« NEQN, 24268 1=, 20 4D1 8820 [ NU+ 23N+ NN |
4 T BNOCNU-ZeNFGN, G+ 2EN) |

SC = SCeSCHNW

TF [ARSLSCNWI /AR SCH .6T..001) GO TO 3001

N=1

45C = PLIR**(NU+N#CN—-3} ¥ [{COSTA-LAY/[E-LAY JoC11 o260 L/RT 22N
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171
172

173
174

175

L7¢
177
178

179
180
181
182

183
184

1ES
186

187
188
JEL]
190
151
152
193
194
195
1986
187
158
199
204a
201
202
203
204
285
206
267
41 ]
209
219
211

213
214
2L5
F4 L]

3002

€ FND
C AFG

ETIE

3nes

C ENLC

2005

20C6

293

4 S(NORENFFFF(NITI®E { ZaneRNGLNUEN*ON,2#N)/LA-C. 50401 %m2

$ w{2ehe RO INUFNEON =24 2R €2 1/LAD )

AN+l

ASCHW= Pla®s (NUsNRXON-2I 6 (1 COSTA-LAN/A(L-LA)])#CE1#¥2%[3/AT) 24N
& SINOTAN/FFR(NII® { 2#NeANOINUN*DN, 25N /L A-C. 5080192

¢ R[ZEASBAQINMUSNTON-2, 2*N+2I/LA) b

ARC = ASC+ASCNW

1F {ARS{ASCNWI FA35145CY LGT..001) D TO 3002

18T CYCLOTRON HARMANIC

[N ZMR CYCLOTRON HARMANIC

SC2= -P2R*F®INU-3} # ((COSTA=LAM/(2-LA}} * C2]%=2
oF NURBMCINU-Z,41%02%%27 4

M=

NeN+]1

SEZNW= ~P2REE{NUSNSON-3}#( (COSTA-LA}F12—Lap)#{21%4Z+]{ L/RT 2N
£ X (NOERN/FFEIND]S
4 D2eeFE(NU+ZENaNEQN S ONO INU=2+N*ON, & 425H) /4

§L2 = 07 + SC2HW

1 (ABSESC2NWIZARSISE2Y oGT,. 001 ) GO TO 3004

N=1

ASCP2=  PIR&*INUSNHQN~T )2 {{COSTA-LAY/[2-LA) 1*CZL3¥22%[1/BT)*#N
s FINQEEN/FRFENIIY [D2%%2/6)%
§ AENANNQUNUSNECN-2 ,20M+2) /LA

N=N+1

ASCINW=P 20 ks (NUANRON=-3 ) # ({COSTA=LA) /(2-LA} [ #C2L*%2% | 1/BT)**N
§ #INOE<N/FFERE({NI}E ID2%22/74]%
$ AFNFBNOINUSN®UN-2 28N +2 )/ LA

MSC2 = ASC2 + ASCZNW

TF IARSCASCZNW)FABSEASC2Y LGT. ,00L) GD TD 3005

2MD CYCLCTRON HARMOMIC

CREFKI = CUFFRKCXCALPHA/LGSTA®*2

K1kt = COEFR1#SL

KTKC = COEFKT®(|SC+ASCH

PIPMIN=7.74

PIPMIN=PIPMINAFIR

1F (PLPMINLGT.1.) £O0 TN 293

CN = BROT(NU,Q+P1PMIN)

M=0

M=Me

CNNW = MQEaMep [PMEINSS [ MECNI*BNOT CNU+M QN 26MPLPHINI/FFFIME
Ch = CN+CNNKW

TF(ARSICNNWI/ABSICNILGT.0.00L) GO TO 2045

P1PM[N=]1,

CD = BNOTINULOPLPMIND

M=0

M=k L

CONW = NOA#MOD [PH] NEEEMEON 1€ SNAT (NU4MEON 2R, PLEMTNT/FRRIM
CD = CR+CONW

IF(ABS [CANWIAABSICOD).GT.0.001) GO TO 20086

£DEF = CN/CD

KIKE = KIKC#COEF

CORTTNUF

KIKE=KIKL+K[%C

COEFG = —16DDO0RL AXATSRTNL/ TNVL ¥ #3

GLOCO = COEFG * ALK

KIKS = COEFKI®(SCZ+ASC2)

Gloccl= COFFG * HIKL

GLCDOL= CUEFG * KIKC

GLOO0S = CDEFGH*RIKS

KIKLY = COEFKI*SLU
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217 GLU = COEFG*KTKLY

218 GCU = PGLACO®( [COSTA=LAF/LI-LA) I#{CALPHA/COSTAZS2) % (R[ND/PRIND)
$ BCLI®SZ&(PPR/PIR & (NU-3)

219 RIKCU = GCU 7 COEFG

2240 APVYGC=SORT{LAN* SQRTL1-LAI*¥3%2/BFTA

z21 PRIW==PK[K2aPYGLEPRINA

222 RINT = —KIK ®AVGC*RIND

223 L1018 KIXKL®AVGL* RIND

224 WEWC - KIKCEAVGC#RENN

229 WIWLU = —KIKLU*BYGC*RIND

22¢€ WIWCY = ~KIKCU*AVGC*=RIND

227 WIWS = —KIKS*¥AVGCERIND

C AVGE AND APCGC = MCOULUS OF GROUP YELOCITIES{GENERAL AND PARALLELCASES)
C NORMALIZED TQ C

C WIW'S ARF IMI{CMEGA)/REICMEGA)

€ PKIK=KIK FCR PARALLFL PROPAGATION

228 PCOEF5=—1600Q0*BT*LA®PRIND /FINVL**3
229 PGLO0Q=PCOEFGPPKIK

23c COEFGH, = J6B&*FAL*6.2831 84

231 PGH = COEFGH*DTATGHPW W

232 CLC = COEFGHEDTATG

233 G T = COCaWIWT

234 GuL, = COCHW WL

238 GHC = CCCswind

238 GWLY = CLCaMIWLY

237 GWLU = LCC*WIWCU

228 GWS = CCC*MIWS

229 PGHSUM = PGWSUM + PGHW

2490 GWSSUM = GhSSUM + GRS

241 GHTSUR = GhTSUM + GWT

242 GHLSUM = GHLSUM + GWi

243 GWCSUM = GhCSUM + Ga(

244 GWLUSM = GWLUSM + GWLY

245 GuCUSM = GWCUSM & GuWCl

246 PRINT 703

24} 703 FORMATI! GMT GHL GWC L Gwi2 PGn*)
248 WRITE(5.4301 GRTSUM, GHLSUMGHCSUM GHSSUM . PGW SUM
249 430 FORMAT(SELL.3}

250 [F ITGLEQLTGLASTI G TO 10001

251 GN TC 10000

252 339 STOP

253 FND
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LET

£¥0-£2 THS

TABLE A.4.

FEC= §0.0000 TGO=

L
1,9623
GhT

=-%.703F-C2

L
3.5€620
GKT

-0.486E~CL

L
3.9150
GawT

-0.273F CO

-0,143F C1

b
3.6766
CrT

-0.4528% 0l

L
3.5797
GnT

-0.1CeF 02

L
1.4549
GuwT

-DL2a4F €2

L
3.3T84
GWT

=0.357F G2

L
3.28%94
GWT

-0.519F 02

-0.7£2F 02

L
3.1245
GWT

-0.929F €2

L
3.057%
GNT

LAY
47.5300
GwWlL
-{.351F-C2

LAT
434 1aCo
Gkl
~0.5928F-C2

LAT
40,4900
Ghi
-C.1526-CL

LAY
384200
CuL
-C.8R0F-G1

EAT
3646700
Gt
-0.374E 02

LaT
315.5500
WL
=0.£32F QO

LAT
34.15C0

LWL
=C.l42F Q1

LAT
33,2300
GWL
=C0.217F C1

LAT
32.2700
Gwl
-0.352F a1

LAT
31.40200
GHL
-C.6l4E 01

Lar
30,2900
GWL
—=C.815F O
AT

29.4500
Gl

AN EXAMPLE OF THE COMPUTER

o.Co0aco TGLAST=  0.5247452
La THETA BFTA
0.3267 ~-13.3700 1.05%4%
GWCL GwC2 PGh
~0.35%26-92 -¢.173F-C4 -0.3855-02
LA THFTA BETA
J.5315 -4, 6200 1.5754
GHC1 onC2 PGW
-0.4336-01 -0,503F-04 -D.439F-01
LA THFTA AFTA
G740 - L. 6300 L. 8979
GwCl GWi7 PGY
~C.257F Cu -C.9A0F-0& ~0.258F €4
Le THETA AET &
D.BAb4  -10.9330 7.0898
GHC1 Gwl 2 Lt] ]
-0.134F 0l -ud.211F=-C3 -0.L129E 01
La THETA arra
0.1832 -13,5606400 2.1865
GwC1 G2 PGW
~0.486E Ql —0.4LREF-C3 -0.433E OL
LA THETA SETA
090650 =1%.0700 2,2258
GHC 1 GWC 2 BGW
=0.%92% Of -0,5R85E-03 -D.799¢F Ol
LA 1 4 BETA
0,916 -Llb.s0D0 2.2568
GWCL GAC2 PGW
—Ca.230F U2 —0.MG2F-C3 -0, 158 Q2
Li THRTA RETA
V. 91680 -17.4600 2.2699
GwCl LW 2 PGW
-0.336F 02 -0.1146-02 -0,221% 02
LA THETA BETA
0,9k64 ~—18.4200 2.2004
GhCl ChC 2 PhW
~0.4A4F 07 -0.151F-C2 -0.213% 02
LA THFETA AFTA
0.5154 =-19.5400 2.2871
Gl GWC2 PGW
-0, TCLE 02 —Q.2167F-02 —0.444F 02
LA THETA RETA
0.9134 -20.1702 2.2901
GWC 1 LWL 2 PGW
~D.B4TE U2 -0.2&3F~C2 -0.52TF 02
LA THETA QETA
0,9112 ~28.9090 2ez2927
GWC L Wz PGH

OUTPUT OF THE PROGRAM

nENS
Bll

DENS
562

NFHS
521

DENS
495

NENS
LE1S

DENS
485

NENS
4348

NENS
4d8

NENS
491

DENS
495

DENS
a9n

UENS
502

06
q.0215

16
G.C429

TG
09,0652

T6
0.0%38

TG
N.1270
G
D.1529
G
0.1907
16
0.2172
TG
0. 2522
TG
0.300%

TG
0.3315

TG
0.3704

MUCHS
2.22

HUC CS
.19

MUCGS
4.35

MUcos
5.87

MULCs
T.57

MUCCS
8. 60

MYCLS
10.41

MuL DS
L1.39

MUCCS
LZ2.45

MLCOS

13.56

MUCDS
14.09

MUCES
l4.61

WLAN
D.51TE

wl AN
0.251F

WL AN
0.135E

WLAN
C.T43E

WLAN
DahdbE

WL AN
4.330F

HLAN
0.236E

HWLAN
J.197€

WL AN
0.165E

WLAN

0.139E

WLAN
2.129E

WLAN
D.120€

02

n2

ul

oL

a

0l

oL

ol

ol

al

WCl
D.214E 03
wCE
O.139E 02
WC1
0.1646E 01
HC1
D.284E CC
wlL
D.T81E-01
WCl
D.4UHF-01
WC1l
0.222%-01
WC1
d.17CE-01
.
WLl
D.l3TE-U]
WL L
C.119E-Q1
Wil
0.115E-0t

Wl
0.1l4E-01

LISTED 1IN

Do
0.08

na
q.05

0o
0.908

ba
0.16

oe
0.21

Do
Ja 2%

0o
0.27

89
0.29

no
0,51
odi)

0.32

Do
D434

Do
0.25

TABLE A.3.

oL
O0.l6

o1
0,03

vl
0.03

nt
0.0

01
0.03

D1
V.03

Dl
a.03

N
Q.03

o1
0.03

Dl
0.03

131
G.03

n1
.03

n2
D40

0.11

n2
C.l5

02
Q.22

0z
G.27

D2
0,30

02
0.32

02
Q.34

G2
D.386

D2
0,38

0z
0.40

02
0,42



APPENDIX B. DPOSSIBLE TRAPPING BY A NATURAL WHISTLER

When a whistler is emitted by a lightning discharge of duration much
shorter tham the trapping time, the gquestion arises whether the wave can
change the trajectory of the particle enough to trap it. We make an
analysis here on the assumption that the medium is one dimensional (axis
0z along EO)' The interaction is only important around the equator,
and the propagation is parallel (for nonparallel propsgation the wave
propagates across L shells and interacts during a shorter time with
particles compelled to drift along magnetic field lines than for parallel
propagation}.

Cyclotron trapping:

In this case we assume parallel propagation. Let us suppose that

at some point

v = V .
Il R {B.1)
where
u%—w
VR = —--1-(— (B.2)
v = parallel velocity of an electrom.

]

Along the lines of Dysthe [1971] and Sudan and Ott [1971], we will

consider the particle as trapped (see Section 2B) if the condition

d
HF_E (V“ -VR) =0 (B-S)
. i . -1/2
can be realized during a trapping time Tc = 2ﬂ(m£1kvl) or corre-

spondingly along a length L = qch as the particle moves.

We can write Eq. (B.3) as:

Av = Av (B-4)

SEL 73-043 138



where Av, and &VR represent the variations of v, R as the particle
H

travels AZ.
av, is the sum of two terms depending upon:

1. the interaction of the wave on the particle (depends on the
angle | hbetween v_L and Bl);

2. the variation of the static magnetic field, i.e., particle
mirroring.

v v 1 daw

dvR is the sum of two terms depending upon:
1. the variation of electron gyrofrequency with distance { because
of the medium inhomogeneity);

2. the variation of wave fregquency with distance {because of wave
dispersion)

dw dw
3 1 1 Tp c 1 1\ do
AVp = (2 om0 o dw ) dz (kv W ﬂn)dz vghz  (B-6)

dw -1 dw | ow
i ﬂgf-i-&. (B.7)

{electron and wave are counterstreaming).

The whistler time delay is given by

z

T{z,w) = ./F %E (E.8)
zZ

0

so that:
&D B —'1/Vg
Ry -
W 1
o T (B-9)
We see from Egqs. (B.5) and (B.6) that Eq. (B.4) is fulfilled if,

. (B.10)

kvlcuC1 > vR

W = W = dw dw v 2
(§-+ = tanza - = L ) S . (—— + 1 1
2 ch wp dmc dz vg VRE 7 o0
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Around the egquator:
2
9 (=
~ 1 - |— . .
a% QEE [ + 2 (R ) ] (B.11)

and we assume a@ ~ constant.

According to Eq. (B.11}, the variation of ué is a second order
quantity in (z/RE) around the equator. The variation of o is a first-
order quantity but for w — 0; therefore, we can neglect the first term
in the RHS of Eq. (B.10) and express Or/dw at the equator (w # ~ 0).

We use the hyperbola approximation for the whistler dispersion [Bernard,

19731 :
-A
T T DOm cE ®
~'E T T2 '
Wiy =
o - )

R_w

E pE
DOm = dO ’ (B.12)

and for the D.E. model the values of the dimensionless parameters A and

dO are [Bernard, 1973]:

A~ .25 ,

d0~ 7. (B.13)

Using Eq. (B.13) we get:

Fel— -
or n mEE( oy aEE) Aw(m+mcE)

E
o = 375 z (B-14)
w (W _-w)
CE

g

which can be inserted into Eq. (B.10) (neglecting du%/dz) to yield:

2

w E 4a?(w E-w)l/zm}é2
ktang, abl > (1 + < < ¢

— — (B.15)
2m REdO [(DCE(SLD u)cE) Aw(w-l-wc )]

E

Whistlers trigger emissions primarily at a>n.aEE/2 and also at

lower frequencies at the hottom of whistler traces.
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As an example, we choose W = uEE/2, o = 300, L =3, and
%, = 2t/k = 2 km. Then Eq. (B.15) reads
48]
-4
<l o . 3.5%10 (B.16)
d4}
cE
for
- 2 -
B, ~ 1.2x10 5w1o/m , B = 4x10 lOWb/m2 (B.17)

OE 1

The minimum field required to have trapping is excessively high

12—10_11Wb/m2). For a freqﬁency

compared to typical values (Bl ~ 10"
where BT/am is comparable to, or higher than, its value at aEE/Z’
trapping would need the same order of magnitude for Bl-

Low frequencies are not more favorable either because here
w .
K~ /© decreases with frequency and v_ increases. This makes it
E;u% R
more difficult for inequality (B.10) to be fulfilled.
The RHS of Eq. (B.10) may vanish at a point off the equator. In
this case approximations {(B.1ll) to (B.1l2) are no longer valid, and a

more refined analysis should be made.

Landau trapping:

The Gendrin mode is the most favorable for trapping because the
group velocity and resonant velocity are equal and ray direction and
particle drift directions are the same. As we are concerned here with
ducted whistlers, we will suppose cos8 ~ 1.

Computations similar to those above yield:

(B.18)

eE1 1
AV = o v sin(kz-wt) - Az, (B.19)

1 ’ v, 2w

1 [
dz
C
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aw
) Iz ] VRAZ . (B.20)

=

<

=]

I}
—
| ——

[ M
08 -
1
8|H
o a
2.6
g g
[=% I N
N
t.’E
1
/—-..,.\
-
<=
i
el

A condition similar to Egq. (B.10) is found for the minimum

field amplitude required for trapping.

E_k
&8

M

2 w w da% de VR 1
(tanaﬁ;—gan: E—T—lv—Rm . (B.21)

v
Z 'R

This time, VR a.vg and the wave dispersion can be neglected, and
the space inhomogeneity is more effective in preventing trapping.
Neglecting the wave dispersion, Eq. (B.21) can be fulfilled up to a

certain distance =z from the equator given by:

do |1 oneE
p 1

z -1 2 W w .
TS o M Rl ralidirerrs 9. MR (B.22)
E c P [\ w E

Let us take the same example as previously Aw = 2km, w = QEE/Q’
&:450, and L =3.

E. = E ~ v B_sinf (B.23)
Z P

FEq. (B.22) reads
Z

Rg

< 1.6x1010Blsine (B.24}

There will be trapping if this value is bigger than a trapping length.
For a ducted whistler, & < 30O and trapping would require a minimum

field of

B, ~ 4x10”wb/n” (B.25)

This field is still high compared to typical values.
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APPENDIX C. HOT PLASMA CORRECTION TO THE REAL PART

OF THE REFRACTIVE INDEX

The refractive index is given by the expression:

w? - e k2v2
N2 -1 -5 £ = . 2lurkv) g v dv dv, (C.1)
2 2 kv, —w+w o1 1L
a 0 — (km,—a»aé) il c
kv”
For small v, we treat R as a first order gquantity and we arrive
c
at:
wz w_w uF v2
2 2 2 2
N =1 4 S k" <vi> - P K° < =%,
wlw —0) 32 I 2 2 2
c (e w (ak-m) W
(Cc.2)
where:
(=]
2
< v e =J/” v g d v
K] 0 SRR
We rewrite Eq. (C.2) as:
2 2
N ~N (1+6e), (Cc.3)
c H
where:
2 v v
T 1- 2
e =1+ m—§—7§ (<:E—'> - —5& < Ei > )
(1-p)
2
and where Nc is the cold plasma refractive index expression.
) e e 2 1 2
For isotropic distributions, < v, 2= 5 < VL e and EH reduces
to
EA v, o2
ey = 1+ ——E———g < e > . (Cc.4)
2(1-A)

This result was already derived by Guthart t1964] where he chose for

g. 2 Maxwellian distribution for which < v, >-= 2KT/M.

0

Equation (C.4) is also given by the full adiabatic macroscopic

theory [Quemada, 1968].
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We choose now Eq. (3.6) for go. Then

2
2 B

A \Y
B sqva -q/2] . (1—A)(q+2)J (_H)
T )0 B @ [1 — 3 | %m\c (c.5)

As an example, we chose vy =6 and gq =6 (the distribution is thought
to be guite anisotroplc towards low energies) and evaluate roughly the
corrective term EHE at the equator where the contribution to whistler

dispersion is most important:

2
2 v
PP - N (—E) . (C.6)
HE™ )3 EH\c

: -1
Wwith WH =10 eV, at L ~ 4, B ~ 10, 5EH,V 10 (for + = 86)
and

-4
egp (b << 1) ~ - ax107,

-3
~ 0.5) ~ - 0. )
ey (A ~ 0.5) 4x1 (c.7)

Such a difference in the dispersion would be unnoticeaﬁle.

Unfortunately, a similar computation for 8 # 0 Dbecomes fairly
complex as a cubic equation has to be solved. This was done by Wang
[1970] for the scalar pressure theory [Denisse and Delacroix, 1963]. He
found corrections became important close to the resonance cone, as
expected. A selution for 8 ¥ 0 will contain terms such as Eq. {(C.6) but
where 1-)\ is replaced by cos=8-p and €y increases very rapidly for
8- 6,. Wang's [1970] computations could be improved using the Ffull

R
adiabatic theory [Quemada, 1968].
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